Progress of TRIUMF β-SRF Facility for Novel SRF Materials

E. Thoeng1,2, T. Junginger3, P. Kolb1, B. Matheson1, G. Morris1, N. Muller1, S. Saminathan1, R. Baartman1, R. E. Laxdal1

1TRIUMF, 2University of British Columbia, 3University of Victoria

\section*{MOTIVATIONS}

PUSHING ACCELERATING GRADIENT OF SRF CAVITY \to Thin Film Approach

- **SS Bi-layer**
 - Low-T baked Nb, N-infused Nb
 - Higher-Tc superconductors (Nb$_3$Sn, MgB$_2$)

- **SIS Multilayer**

MEASURE THIN LAYERS (LONDON PENETRATION DEPTH) \sim tens to hundreds of nanometers

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Measurements of penetrating field in the Meissner state with radioactive ^8Li.}
\end{figure}

\section*{METHODS}

LOCAL MAGNETIC FIELD MEASUREMENTS

- Beta-decay asymmetry with muons/radioactive ion beam
- DEPTH RESOLVED SURFACE + INTERFACE STUDIES \to e.g. Depth dependent London Pen. Depth
 - LE-μSR (PSI)
 - Low-energy radioactive $^8\text{Li} \to \beta$-NMR (TRIUMF)

HIGH PARALLEL MAGNETIC FIELDS

Not currently available \to β-SRF (TRIUMF)

\section*{β-SRF PROJECT}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Current existing β-NMR beamline. Circled in red is the location of the β-SRF upgrade [G. Morris, 2014].}
\end{figure}

\section*{CURRENT UPGRADE}

Phase-I: Optics & Diagnostics Modifications

- Beam proposal for depth profile of dirty layer in Niobium approved \to ellipsoid samples + in-house heat treatment (induction furnace)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{The modified optics and a new four-electrode segmented decelerator used for compensation of the higher magnetic field and deceleration of beam (modified from [S. Saminathan, 2015]).}
\end{figure}

\section*{FUTURE PLAN}

Phase-II: Beamline Extension + Higher Fields (200 mT)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{The new 200 mT Helmholtz coil magnet and the support stands/bracket design.}
\end{figure}

\section*{CONCLUSIONS}

- β-SRF project designed to meet high-parallel field (up to 200 mT) and depth-resolved London penetration depth studies.
- Scope divided into two phases: phase-I upgrade currently ongoing, phase-II continues until June 2020.
- Incoming beamtime for preliminary measurements with ellipsoid SRF samples

\section*{Acknowledgement}

This work is funded by NSERC (Natural Sci. and Eng. Research Council) and NSERC/UBC IsoSim Program