Keyword: luminosity
Paper Title Other Keywords Page
THP105 Thermal Mapping of SRF Cavities by Second Sound Detection With Transition Edge Sensors and Oscillating Superleak Transducers cavity, SRF, diagnostics, experiment 1182
  • G. Vandoni, T. Koettig, A. Macpherson, K. Turaj, L. Vega Cid
    CERN, Meyrin, Switzerland
  • H. Furci
    EPFL, Lausanne, Switzerland
  The SRF cavity testing facilities at CERN include four vertical cryostat stations in SM18 and a cryostat for small cavities in the Cryolab. A large range of structures are tested, from Nb thin film cavities for HIE-Isolde and LHC, to bulk Nb crab cavities for HiLumi or 704 MHz 5-cell high-gradient cavities. To cope with different shapes and small series tests, thermal mapping diagnostics is deployed by sensing second sound in superfluid helium. A new type of Transition Edge Sensors (TES) has been developed in the last 2 years. These are miniature resistors of thin-film superconducting alloys, micro-produced on insulating wafers. An extensive campaign of optimization of design, fabrication process and composition was accompanied by qualification in a calibration cryostat. Reproducibility, stability, then intensity, distance and angular dependence of the response were assessed and compared to Oscillating Superleak Transducers (OST). The TES were then installed in a vertical cryostat for tests of a prototype crab cavity for HiLumi. TES are now applied to quench localization on high gradient cavities, for which the most recent results will be presented, together with the OST results.  
poster icon Poster THP105 [2.186 MB]  
DOI • reference for this paper ※  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
FRCAA1 Overview of SRF Deflecting and Crabbing Cavities cavity, HOM, cryomodule, collider 1192
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. Recently, a two-cavity cryomodule with double quarter wave crabbing cavity was installed in SPS at CERN and successfully tested with the proton beam. We present the details of different superconducting deflecting and crabbing cavities and their applications, as well as the recent results of the crabbing systems test at SPS.  
slides icon Slides FRCAA1 [14.149 MB]  
DOI • reference for this paper ※  
About • paper received ※ 04 July 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)