Keyword: HOM
Paper Title Other Keywords Page
MOP014 Electroplating of Sn Film on Nb Substrate for Generating Nb3Sn Thin Films and Post Laser Annealing laser, cavity, radio-frequency, electron 51
 
  • Z. Sun, M. Liepe, T.E. Oseroff, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, A.B. Connolly, J.M. Scholtz, N. Sitaraman, M.O. Thompson
    Cornell University, Ithaca, New York, USA
  • X. Deng
    University of Virginia, Charlottesville, Virginia, USA
  • K.D. Dobson
    University of Delaware, Newark, Delaware, USA
 
  Controlling film quality of Nb3Sn is critical to its SRF cavity performance. The state-of-the-art vapor diffusion approach for Nb3Sn deposition observed surface roughness, thin grain regions, and misfit dislocations which negatively affect the RF performance. The Sn deficiency and non-uniformity at the nucleation stage of vapor deposition is believed to be the fundamental reason to cause these roughness and defects issues. Thus, we propose to pre-deposit a uniform Sn film on the Nb substrate, which is able to provide sufficient Sn source during the following heat treatment for Nb3Sn nucleation and growth. Here, we demonstrated successful electrodeposition of a low-roughness, dendrite-free, excellent-adhesion Sn film on the Nb substrate. More importantly, we further achieved a uniform, low-roughness (Ra = 66 nm), pure-stoichiometric Nb3Sn film through thermal treatment of this electroplated Sn film in the furnace. Additionally, we provide preliminary results of laser annealing as a post treatment for epitaxial grain growth and roughness reduction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP014  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP016 Insights Into Nb3Sn Coating of CEBAF Cavities From Witness Sample Analysis cavity, niobium, SRF, hardware 60
 
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Co-Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
With the progress made in the Nb3Sn coatings on single-cell SRF cavities, development is ongoing to reproduce single-cell cavity results on practical structures such as CEBAF 5-cell cavities. During CEBAF cavity coating development, several changes from the single-cell procedure to the coating setup and the heating profile were introduced to improve the quality of Nb3Sn films. To witness the properties of grown Nb3Sn films in different cavity locations, 10 mm x 10 mm samples were positioned in strategic places within the coating chamber. Composition and structure of the samples were analyzed with surface analytic techniques and correlated with sample location during coatings. Implications from sample analysis to Nb3Sn coatings on different geometries are discussed in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP016  
About • paper received ※ 26 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP023 Nitrogen Infusion Sample R&D at DESY cavity, niobium, vacuum, SRF 77
 
  • C. Bate, A. Dangwal Pandey, A. Ermakov, B. Foster, T.F. Keller, D. Reschke, J. Schaffran, S. Sievers, N. Walker, H. Weise, M. Wenskat
    DESY, Hamburg, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • G.D.L. Semione, V. Vonk
    DESY Nanolab, FS-NL, Hamburg, Germany
  • A. Stierle
    University of Hamburg, Hamburg, Germany
 
  The European XFEL continuous wave upgrade requires cavities with reduced surface resistance (high Q-values) for high duty cycle while maintaining high accelerating gradient for short-pulse operation. A possible way to meet the requirements is the so-called nitrogen infusion procedure. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on sample R&D, with the goal to identify key parameters of the process and establish a stable, reproducible recipe. To understand the underlying processes of the surface evolution, which gives improved cavity performance, advanced surface analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized. Additionally, a small furnace just for samples was set up to change and explore the parameter space of the infusion recipe. Results of these analyses, their implications for the cavity R&D and next steps are presented.  
poster icon Poster MOP023 [3.759 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP023  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP049 Prototypes Fabrication of 1.3 GHz Superconducting Rf Components for SHINE cavity, FEL, niobium, SRF 164
 
  • H.T. Hou, J.F. Chen, Z.Y. Ma, J. Shi, Y. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • F.S. He
    IHEP, Beijing, People’s Republic of China
  • S.W. Quan
    PKU, Beijing, People’s Republic of China
 
  Aiming to high repetition rate hard X-ray facility, con-struction of Shanghai HIgh repetition rate XFEL aNd Extreme light facility (SHINE) project has been ap-proved. During the R & D phase, prototypes fabrication of key components of 1.3GHz superconducting rf system have been proposed, especially 1.3 GHz 9-cell niobium cavities. Here the paper will present the progress of the fabrication status and performance of the prototypes, together with the analysis of not only the quality factor and gradient of the cavities. Consideration of HOM feed-throughs and absorbers are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP049  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP058 ESS Medium Beta Activity at INFN LASA cavity, status, controls, SRF 199
 
  • D. Sertore, M. Bertucci, A. Bignami, A. Bosotti, M. Chiodini, A. D’Ambros, G. Fornasier, P. Michelato, L. Monaco, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • S. Aurnia, O. Leonardi, A. Miraglia, G. Vecchio
    INFN/LNS, Catania, Italy
  • A. Gresele, A. Visentin
    Ettore Zanon S.p.A., Nuclear Division, Schio, Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • D. Reschke, A. Sulimov, M. Wiencek
    DESY, Hamburg, Germany
  • D. Rizzetto, M. Rizzi
    Ettore Zanon S.p.A., Schio, Italy
  • L. Sagliano
    ESS, Lund, Sweden
 
  The industrial production of the 36 resonators (plus 2 spares) for the ESS linac started and it is steadily progressing. Cavities are delivered by industry as fully surface-treated and dressed to AMTF facility at DESY for their qualification via vertical cold-test. This paper reports the current status of the manufacturing process from sub-components to processing of the complete cavity inner surface. It also reviews the documental control strategy deployed to preserve the fulfillment of ESS requirements as well as the cavity performances demonstrated so far.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP058  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUFUB3 Mapping Flux Trapping in SRF Cavities to Analyze the Impact of Geometry cavity, experiment, niobium, simulation 364
 
  • F. Kramer, J. Knobloch, O. Kugeler, J.M. Köszegi
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
 
  A combined temperature and magnetic field mapping system was used to investigate the impact of an ambient field on trapped flux and on the resulting local surface resistance. For this, a 1.3 GHz TESLA single cell cavity was cooled through the superconducting transition at different magnetic field angles with respect to the cavity axis. The measurements suggest, that the field is trapped homogeneously over the cavity volume, without changing its orientation. Flux trapped perpendicular the surface contributed significantly more to the surface resistance, than trapped flux parallel to the surface.  
slides icon Slides TUFUB3 [12.777 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUFUB3  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP008 HOMs Extraction Structure Design for HEPS 166.6 MHz Cavities cavity, extraction, experiment, simulation 403
 
  • X.R. Hao
    IHEP, Beijing, People’s Republic of China
 
  Higher order modes (HOMs) may af{}fect beam stability and refrigeration requirements of superconducting cavity such as the 166.6~MHz superconducting(SC) cavity, which is studied at IHEP. Under certain conditions beam-induced HOMs can accumulate suf{}f{}icient energy to destabilize the beam or quench the SC cavities. In order to limit these ef{}fects, we considers the use of coaxial HOM couplers on the cut-of{}f tubes of the SC cavity. However, HOMs cannot be ef{}fectively extracted by HOM couplers. Therefore, it is necessary to design a HOMs extraction structure to introduce the dangerous modes from the cavity into the bundle tube, which are designed to couple to potentially dangerous modes while suf{}ficiently rejecting the fundamental mode. The HOMs extraction structure consists of an enlarged tubes, a coaxial structure, and the petal. The extraction of the dangerous modes and the suppression of the fundamental mode are realized by the petal structure and the coaxial structure. In order to verify the designs, a rapid prototype for the favored structure was fabricated and characterized on a low-power test-stand.  
poster icon Poster TUP008 [1.665 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP008  
About • paper received ※ 22 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023 Experience of LCLS-II Cavities Radial Tuning at DESY cavity, SRF, FEL, linac 456
 
  • A. Sulimov, J.H. Thie
    DESY, Hamburg, Germany
  • A. Gresele
    Ettore Zanon S.p.A., Nuclear Division, Schio, Italy
  • A. Navitski
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • A.D. Palczewski
    JLab, Newport News, Virginia, USA
 
  Radial tuning (rolling) was applied to three LCLS-II cavities to prevent that their lengths exceed the technical limits. The cavities have a reduced frequency due to additional material removal during cavity treatment well beyond the baseline recipe. The mechanical condition of the cavities was relatively soft because of the thermal history and the niobium manufacture requirement of an optimal flux expulsion. The niobium was highly recrystallized by 3 hours annealing at 900°C and 975°C respectively. Each cavity received an inner surface treatment of 200 µm electro-polishing (EP) and an external 30 µm buffered chemical polishing (BCP) as part of the baseline recipe. Each cavity received an addition ~100 µm of chemical removal along with a second annealing treatment before the radial tuning process. Detailed information about the accuracy and homogeneity of LCLS-II cavities rolling is presented as well as results of field distribution analysis for TM011 zero-mode with a comparison to standard cavities.  
poster icon Poster TUP023 [0.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP023  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP024 Radial Tuning Devices for 1.3 GHz TESLA Shape Cavities cavity, SRF, FEL, niobium 459
 
  • A. Sulimov, J.H. Thie
    DESY, Hamburg, Germany
 
  Radial tuning devices at DESY can be applied to any TESLA shape 1.3 GHz cavity to reduce its elongation due to excessive additional material removal (>300 µm) or to compensate critical manufacturing uncertainties. Radial deformation of cavity cells can be provided by a special chain or a rolling device with three rollers. The chain distributes the radial forces on the equator area around the cell. The rollers are moving radially in relation to the rotating cavity and provide an equator diameter reduction. Both devices have the contour close to the cell shape at the equator area. The required equator radius deviation depends on the tuning target and usually varies between (0.02…0.60) mm. Different aspects of the tuning procedure and material properties are described using the example of cavity rolling.  
poster icon Poster TUP024 [0.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP024  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP053 Optimal Thermal Gradient for Flux Expulsion in 600°C Heat-treated CEBAF 12 GeV Upgrade Cavities cavity, niobium, experiment, controls 550
 
  • R.L. Geng, F. Marhauser, P.D. Owen
    JLab, Newport News, Virginia, USA
 
  We will present results on measurement of flux expulsion in CEBAF 12 GeV upgrade cavities and original CEBAF cavities and the search for optimal thermal gradient for reducing the trapped flux in cavities installed in CEBAF linacs. Preliminary measurements of one C100 cavities has shown that a nearly perfect flux expulsion can be achieved at an optimal thermal gradient - a surprising result contrary to the expectation of zero flux expulsion for 600°C heat treated niobium cavities. These results could lead to a cost-effective path for improving the quality factor of cavities installed in CEBAF and ultimately saving accelerator operation cost.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP053  
About • paper received ※ 24 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP066 New Design of SSR2 Spoke Cavity for PIP II SRF Linac cavity, quadrupole, multipactoring, linac 600
 
  • P. Berrutti, I.V. Gonin, T.N. Khabiboulline, M. Parise, D. Passarelli, G.V. Romanov, F. Ruiu, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: US Department of Energy
Superconducting SSR2 spoke cavities provide acceleration of the H in PIP II SRF linac from 35 to 185 MeV. The RF and mechanical design of the SSR2 cavities has been completed and satisfies the technical requirements. However, our resent results of the high RF power tests of fully dressed SSR1 cavities show considerably strong multipacting (MP), which took significant time to process. On the other hand, the new results of the tests of balloon cavity showed significant mitigation of MP. In this paper we present the results of the improved design of the SSR2 cavity, based on the balloon cavity concept. The electromagnetic design is presented, including RF parameter optimization, MP simulations, field asymmetry analysis, High Order Mode (HOM) calculations. Mechanical analysis of the dressed cavity is presented also, which includes Lorentz Force Detuning optimization, and reduction of the cavity resonance frequency sensitivity versus He pressure fluctuations. The design completely satisfies the PIP II technical requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP066  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP102 Superconducting Harmonic Cavity for Bunch Lengthening in the APS Upgrade cavity, cryomodule, photon, operation 715
 
  • M.P. Kelly, Z.A. Conway, M. Kedzie, S.W.T. MacDonald, T. Reid, U. Wienands, G.P. Zinkann
    ANL, Lemont, Illinois, USA
 
  A superconducting cavity based Bunch Lengthening System is under construction for the Argonne’s Advanced Photon Source (APS) Upgrade. The system will reduce the undesirable effects of Touschek scattering on the beam lifetime by providing bunch lengthening in the longitudinal direction by 2-4 times. The major technical components for the beam-driven 1.4 GHz fourth harmonic superconducting cryomodule are in hand and have been tested. These include a superconducting cavity, cw rf power couplers, a pneumatic cavity slow tuner and beamline higher-order mode absorbers. Initial assembly and engineering testing of the cryomodule is underway. Final integrated testing will be complete in 2021. Transportation to and commissioning in the APS is planned for 2022-23.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP102  
About • paper received ※ 08 July 2019       paper accepted ※ 12 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP035 Design of LHC Crab Cavities Based on DQW Cryomodule Test Experience cavity, pick-up, coupling, controls 925
 
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
  • R. Calaga, E. Cano-Pleite, R. Leuxe
    CERN, Geneva, Switzerland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Work supported by US DOE through Brookhaven Science Associates LLC under contract No. DE-SC0012704, contract No. DE-FOA-0001848 and by the European Union HL-LHC Project.
A cryomodule with two Double-Quarter Wave (DQW) cavities was designed, built and tested with the SPS beam in 2018. Each cavity was equipped with an rf pickup antenna to monitor field amplitude and phase. The pickup antenna also included a section expressly designed to couple and extract one of the Higher-Order Modes (HOM) at 1.754 GHz. The SPS beam tests evidenced direct coupling of the beam to this pickup antenna, in a similar way that a beam position monitor pickup couples to the passing beam. This undesired coupling had an impact on the RF feedback system responsible to regulate the cavity field and frequency. The present paper proposes a new DQW cavity design with improved antennae which provides adequate fundamental mode extraction while providing a reduction of both direct coupling to the beam and heat dissipation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP035  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP051 Upgrades to Cryogenic Capabilities for Cryomodule Testing at JLab cryomodule, cavity, cryogenics, operation 983
 
  • N.A. Huque, E. Daly, T. Wijeratne
    JLab, Newport News, Virginia, USA
 
  The cryogenic facilities for cryomodule testing at Jefferson Lab (JLab) have been modified and to enable testing of Linear Coherent Light Source-II (LCLS-II) cryomodules. Temporary changes in u-tube connections at the Cryogenic Test Facility (CTF) has enabled rates of cavity cooling that are a factor of 10 higher than previously achieved. Cryogenic connections at JLab’s Low Energy Recirculator Facility (LERF) have been repurposed to enable two LCLS-II cryomodules to be tested in series. This testing shares the helium space with the Central Helium Liquefier (CHL) that is also used by the Continuous Electron Beam Accelerator Facility (CEBAF). Cryomodule testing can occur while beam operation is ongoing at CEBAF. Improvements to these facilities have allowed the testing of the JLab’s highest ever performing cryomodules.  
poster icon Poster THP051 [0.722 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP051  
About • paper received ※ 20 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP056 Current Results From Acceptance Testing of LCLS-II Cryomodules at Jefferson Lab cryomodule, cavity, controls, operation 1007
 
  • M.A. Drury, E. Daly, N.A. Huque, L.K. King, A.D. Solopova
    JLab, Newport News, Virginia, USA
  • J. Nelson, B.H. Ripman, L.M. Zacarias
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other Department of Energy (DOE) national laboratories, in the Linac Co-herent Light Source II project (LCLS-II). The SRF Insti-tute at Jefferson Lab is currently building 21 cryomod-ules for this project. The cryomodules are based on the XFEL design and have been modified for continuous wave (CW) operation and to comply with other LCLS-II specifications. Each cryomodule contains eight 9-cell cavities with coaxial power couplers operating at 1.3 GHz. The cryomodule also contain a magnet package that consists of a quadrupole and two correctors. Most of these cryomodules will be tested in the Cryomodule Test Facility (CMTF) at Jefferson Lab before shipment to SLAC. Up to three of these cryomodules will be tested in a test stand set up in the Low Energy Recovery Facility (LERF) at Jefferson Lab. Acceptance testing of the LCLS-II cryomodules began in December 2016. Twelve cryomodules have currently completed Acceptance Test-ing. This paper will summarize the results of those tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP056  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP059 RF Incoming Inspection of 1.3 GHz Cryomodules for LCLS-II at SLAC National Accelerator Laboratory cryomodule, cavity, linac, controls 1014
 
  • S. Aderhold, C. Adolphsen, A. Burrill, D. Gonnella, J. Nelson
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the US DOE and the LCLS-II Project.
The main part of the SRF linac for the Linac Coherent Light Source II (LCLS-II) at SLAC National Accelerator Laboratory will consist of 35 cryomodules with superconducting RF cavities operating at 1.3 GHz. The cryomodules are assembled and tested at Fermi National Accelerator Laboratory and Thomas Jefferson National Accelerator Facility. Following the transport to SLAC, the cryomodules undergo several incoming inspection steps before ultimately being moved to the tunnel for installation in the linac. The RF part of the incoming inspection covers measurements of a number of parameters like cavity frequency spectrum, notch filter frequency of the higher order mode couplers and external quality factor Qext of the input coupler. The inspection results are compared to measurements at the partner labs prior to shipping and the nominal values in order to verify that the cryomodules have not been damaged during the transport and are ready for installation. We present an overview and analysis of the inspections for the cryomodules received to date.
 
poster icon Poster THP059 [1.223 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP059  
About • paper received ※ 02 July 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP067 Cavity Tilt Measurement in a 1.3 GHz Superconducting Cryo-Module at FLASH cavity, dipole, polarization, electron 1041
 
  • J.H. Wei
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • N. Baboi
    DESY, Hamburg, Germany
  • T. Hellert
    LBNL, Berkeley, California, USA
 
  TESLA superconducting (SC) cavities are used for the acceleration of electron bunches at FLASH. The Higher Order Modes (HOMs) excited by the beam in these cavities may cause emittance growth. The misalignment of the cavities in a cryo-module is one of the essential factors which enhance the coupling of the HOMs to the beam. The cavity offset and tilt are the two most relevant misalignments. These can be measured by help of dipole modes, based on their linear dependence on the beam offset. The cavity offset has been measured before in several modules at FLASH. However, the cavity tilt has so far proved to be difficult to be measured, because the angular dependence of the dipole mode is much weaker. By carefully targeting the beam through the middle of a cavity, the strong offset contribution to the dipole fields could be reduced. Careful data analysis based on a fitting method enabled us then to extract the information on the cavity tilt. This measurement has been implemented in the cavities in one cryo-module at FLASH. First results of the ongoing measurements from several cavities are presented in this paper. It is for the first time that the cavity tilt in several cavities has been measured.  
poster icon Poster THP067 [1.392 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP067  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP070 CEPC HOM Coupler R&D cavity, collider, SRF, cryomodule 1050
 
  • H.J. Zheng, F. Meng, P. Sha, J.Y. Zhai
    IHEP, Beijing, People’s Republic of China
 
  The conceptual design report (CDR) for the Circular Electron Positron Collider (CEPC) has been published in September 2018. In this talk, the CDR design and prototyping of the HOM coupler for the CEPC Collider ring cavity will be given. Each cavity has two detachable coaxial HOM couplers mounted on the cavity beam pipe with HOM power handling capacity of 1 kW. A double notch coupler is chosen due to its wide bandwidth for the fundamental mode. A prototype of this HOM coupler and a coaxial line test bench have been fabricated and tested under low power. The low power test results agree well with the simulation results. The high power test was also carried out in room temperature.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP070  
About • paper received ※ 19 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP071 HOM Measurement Results for CEPC 650 MHz 2-cell Cavity cavity, damping, collider, cryomodule 1055
 
  • H.J. Zheng, F. Meng, J.Y. Zhai
    IHEP, Beijing, People’s Republic of China
 
  CEPC will use a 650 MHz RF system with 240 2-cell cavities for the Collider. The Collider is a double-ring with shared cavities for Higgs operation and separate cavities for W and Z operations. The higher order modes (HOM) excited by the intense beam bunches must be damped to avoid additional cryogenic loss and multi-bunch instabilities. In this paper, the impedance budget and HOM damping and HOM power requirement for the CEPC Collider ring are given. This HOM power limit and the fast-growing longitudinal coupled-bunch instabilities (CBI) driven by both the fundamental and higher order modes impedance of the RF cavities determine to a large extent the highest beam current and luminosity obtainable in the Z mode. Two prototypes of HOM coupler have been fabricated and installed on the 650 MHz 2-cell cavity. The higher order modes were verified by bead pulling method. The Qe for the HOMs were also measured. A test bench with two 2-cell cavities was used to measure the real damping results and HOM propagating properties for a cavity string.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP071  
About • paper received ※ 19 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP072 Development of HOM Absorbers for CW Superconducting Cavities in Energy Recovery Linac cavity, superconducting-cavity, linac, SRF 1060
 
  • T. Ota, S. Nakamura, K. Sato, M. Takasaki
    Toshiba Energy Systems & Solutions Corporation, Keihin Product Operations, Yokohama, Japan
  • E. Kako, T. Konomi, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
  • A. Miyamoto
    Toshiba, Yokohama, Japan
 
  Higher Order Modes (HOM) absorbers for superconducting cavities have been developing at TOSHIBA in collaboration with High Energy Accelerator Research Organization (KEK) since 2015. A new prototype HOM absorber for 1.3 GHz 9-cell superconducting cavity was fabricated. An AlN lossy dielectrics cylinder was brazed with a thin copper plate, and the cool-down tests by nitrogen gas was carried out. The copper plate and a copper cylinder were joined by electron beam welding. SUS flanges were electron beam welded to both ends of the copper cylinder to fabricate a whole prototype HOM absorber. Fabrication process of the prototype HOM absorber will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP072  
About • paper received ※ 21 June 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP096 ESS Prototype Cavities Developed at CEA Saclay cavity, SRF, niobium, linac 1143
 
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, P. Carbonnier, G. Devanz, X. Hanus, L. Maurice, J. Plouin, D. Roudier, P. Sahuquet
    CEA-DRF-IRFU, France
 
  The ESS elliptical superconducting Linac consists of two types of 704.42 MHz cavities, medium and high beta, to accelerate the beam from 216 MeV up to the final energy at 2 GeV. The medium and high-beta parts of the Linac are composed of 36 and 84 elliptical cavities, with geometrical beta values of 0.67 and 0.86 respectively. CEA Saclay is in charge of the cavity prototypes that is designing, manufacturing, testing and integrating them into demonstrator cryomodules. We have manufactured 6 medium beta and 5 high beta cavities and we present here the latest results concerning these activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP096  
About • paper received ※ 22 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP099 The ESS Database for Elliptical Cavities cavity, database, SRF, cryomodule 1152
 
  • P. Pierini, C.G. Maiano
    ESS, Lund, Sweden
  • A. Bosotti, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Wang
    IHEP, Beijing, People’s Republic of China
 
  The large inkind scope of the elliptical superconducting RF linac of the ESS facility implies the handling of handover conditions between the cavities fabrication and testing phases performed at INFN and STFC, to the assembly of cryomodules at CEA and later to ESS in Lund. The performance qualification at the module test stand, and later the commissioning and operation phases require the availability of the cavity performance and frequency data under all environmental conditions during preparation (e.g. temperature, vacuum in beam line/He vessel/vacuum vessel, tuner state). Availability of the data needs to be guaranteed for the long term maintainability of the accelerator. For these reasons a cavity database has been set up at ESS, integrating the data contained in the handover documentation from the inkind partners and extending it during the activities at ESS after receiving the modules. The database has been used to analyze the preparation steps of the prototype demonstrator cryomodule for the tests at ESS, by benchmarking with the data collected during the tests at CEA, and is currently used during the series cavities handover phases.  
poster icon Poster THP099 [10.434 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP099  
About • paper received ※ 03 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP102 Uncertainty Quantification of a Quadrupole-Resonator for Radio Frequency Characterization of Superconductors quadrupole, cavity, SRF, radio-frequency 1168
 
  • P. Putek, S. Gorgi Zadeh, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • W. Hillert
    ELSA, Bonn, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • M. Wenskat
    DESY, Hamburg, Germany
  • U. van Rienen
    University of Rostock, Rostock, Germany
 
  Funding: This work has been supported by the German Federal Ministry for Research and Education BMBF under contract 05H18HRRB1.
To explore the fundamental properties of superconducting materials used in modern particle accelerators, high precision surface resistance measurements in a dedicated testing equipment is of key importance. The quadrupole resonator, originally developed at CERN, and then successfully modified at the Helmholtz-Zentrum Berlin, is ideally suited for characterization of samples at temperatures of 1.8 K to > 20 K, RF fields of up to 120 mT and frequencies of 433 MHz, 866 MHz and 1.3 GHz. In the past years, this set-up has been subject of intensive research on both its capabilities and limitations. Yet, one of the main challenges is the accuracy of the surface resistance measurement, which is determined by both the uncertainty in the RF measurement and manufacturing imperfections related to the production tolerances such as quenching and chemical polishing processes, etc. In this contribution, we focus on the influence of key geometrical parameters on operating the quadrupole resonator at the third mode, since the surface resistance measurement shows some unexpected behavior for this frequency.
* Design and Fabrication of a Quadrupole-Resonator for Sample R&D by M. Wenskat, W. Hillert, et al.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP102  
About • paper received ※ 25 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAA1 Overview of SRF Deflecting and Crabbing Cavities cavity, cryomodule, collider, luminosity 1192
 
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
 
  Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. Recently, a two-cavity cryomodule with double quarter wave crabbing cavity was installed in SPS at CERN and successfully tested with the proton beam. We present the details of different superconducting deflecting and crabbing cavities and their applications, as well as the recent results of the crabbing systems test at SPS.  
slides icon Slides FRCAA1 [14.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA1  
About • paper received ※ 04 July 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAB7 Plasma Processing to Reduce Field Emission in LCLS-II 1.3 GHz SRF Cavities plasma, cavity, radiation, vacuum 1231
 
  • B. Giaccone, J. Zasadzinski
    IIT, Chicago, Illinois, USA
  • P. Berrutti, B. Giaccone, A. Grassellino, M. Martinello
    Fermilab, Batavia, Illinois, USA
  • M. Doleans
    ORNL, Oak Ridge, Tennessee, USA
  • D. Gonnella, G. Lanza, M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Plasma cleaning for LCLS-II 9-cell 1.3 GHz cavities is under study at Fermilab. Starting from ORNL method, we have developed a new technique for plasma ignition using HOMs. Plasma processing is being applied to contaminated and field emitting cavities, here are discussed the first results in terms of Q and radiation vs E measured before and after treatment. Further studies are ongoing to optimize plasma parameters and to acquire statistics on plasma cleaning effectiveness.  
slides icon Slides FRCAB7 [14.701 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAB7  
About • paper received ※ 23 June 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)