Keyword: cryomodule
Paper Title Other Keywords Page
MOFAA1 LCLS-II: Status, Issues and Plans cavity, SRF, linac, FEL 1
 
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC02-76SF00515
The Linac Coherent Light Source II (LCLS-II) project requires the assembly, test, and installation of 37 cryomodules (CM) in order to deliver a 4 GeV CW electron beam to the FEL undulators for production of both hard and soft X-ray pulses at a repetition rate of up to 1 MHz. SRF cavity performance in the 30+ tested CM exceeds gradient and cryogenic dynamic heat-load requirements (set at 16 MV/m and 10 W resp). In this talk we present microphonics, shipping, magnetic-flux exclusion, and field emission performance. The US funding agency, DOE, has recently approved an additional 20 CM for the extension of LCLS-II to 8 GeV. This paper will also include initial cavity and heat-load performance results for the extension project, LCLS-II-HE.
 
slides icon Slides MOFAA1 [30.146 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOFAA1  
About • paper received ※ 25 June 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOFAA3 The FRIB SC-Linac - Installation and Phased Commissioning MMI, cavity, linac, cryogenics 12
 
  • J. Wei, H. Ao, S. Beher, B. Bird, N.K. Bultman, F. Casagrande, D. Chabot, W. Chang, S. Cogan, C. Compton, J. Curtin, K.D. Davidson, E. Daykin, K. Elliott, A. Facco, A. Fila, V. Ganni, A. Ganshyn, P.E. Gibson, T. Glasmacher, I. Grender, W. Hartung, L. Hodges, K. Holland, H.-C. Hseuh, A. Hussain, M. Ikegami, S. Jones, T. Kanemura, S.H. Kim, P. Knudsen, M.G. Konrad, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, P. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, D.G. Morris, C. Nguyen, K. Openlander, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, J. Priller, M.A. Reaume, H.T. Ren, T. Russo, K. Saito, M. Shuptar, J.W. Stetson, D.R. Victory, R. Walker, X. Wang, J.D. Wenstrom, M. Wright, M. Xu, T. Xu, Y. Yamazaki, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • K. Dixon, M. Wiseman
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams (FRIB) superconducting (SC) driver linac is designed to accelerate all stable ions including uranium to energies above 200 MeV/u primarily with 46 cryomodules containing 324 quarter-wave resonators (QWR) and half-wave (HWR) resonators. With the newly commissioned helium refrigeration system supplying liquid helium to the QWR and solenoids, heavy ion beams including Ne, Ar, Kr and Xe were accelerated to the charge stripper location above 20 MeV/u with the first linac segment consisting of 15 cryomodules containing 104 QWRs of β=0.041 and 0.085 and 39 solenoids. Installation of cryomodules with β=0.29 and 0.53 HWRs is proceeding in parallel. Development of β=0.65 elliptical resonators is on-going supporting the FRIB energy upgrade to 400 MeV/u. This paper summarizes the SC-linac installation and phased commissioning status that is on schedule and on budget to the FRIB project.
 
slides icon Slides MOFAA3 [46.571 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOFAA3  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP036 Microphonics Suppression Study in ARIEL e-Linac Cryomodules cavity, GUI, linac, pick-up 136
 
  • Y. Ma, K. Fong, J.J. Keir, D. Kishi, S.R. Koscielniak, D. Lang, R.E. Laxdal, S. Liu, R.S. Sekhon, X. Wang
    TRIUMF, Vancouver, Canada
 
  Now the stage of the 30 MeV portion of ARIEL (The Advanced Rare Isotope Laboratory) e-Linac (1.3 GHz, SRF) is under commissioning which includes an injector cryomodule (ICM) with a single nine-cell cavity and the 1st accelerator cryomodule (ACM1) with two cavities configuration. The two ACM1 cavities are driven by a single klystron with vector-sum control and running in CW mode. We have observed a ponderomotive instability in ACM1 driven by the Lorentz force and seeded through microphonics that impacts beam stability [1-5]. Extensive damping has been implemented during a recent shut-down. The beam test results show 20 MeV acceleration gain can be reached by ACM1. A fast piezoelectric (Pie-zo) tuner is under development to allow a fast tuning compensation for the e-Linac cavities. In this paper, the progress of the microphonics suppression of Cryomod-ules is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP036  
About • paper received ※ 24 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP045 The LCLS-II HE High Q and Gradient R&D Program cavity, SRF, linac, niobium 154
 
  • D. Gonnella, S. Aderhold, A. Burrill, G.R. Hays, T.O. Raubenheimer, M.C. Ross
    SLAC, Menlo Park, California, USA
  • D. Bafia, M. Checchin, A. Grassellino, M. Martinello, A.S. Romanenko
    Fermilab, Batavia, Illinois, USA
  • M. Ge, M. Liepe, S. Posen
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: US DOE and the LCLS-II HE Project
The LCLS-II HE project is a high energy upgrade to the superconducting LCLS-II linac. It consists of adding twenty additional 1.3 GHz cryomodules to the linac, with cavities operating at a gradient of 20.8 MV/m with a Q0 of 2.7·1010. Performance of LCLS-II cryomodules has suggested that operations at this high of a gradient will not be achievable with the existing cavity recipe employed. Therefore a research program was developed between SLAC, Fermilab, Thomas Jefferson National Accelerator Facility, and Cornell University in order to improve the cavity processing method of the SRF cavities and reach the HE goals. This program explores the doping regime beyond what was done for LCLS-II and also has looked to further developed nitrogen-infusion. Here we will summarize the results from this R\&D program, showing significant improvement on both single-cell and 9-cell cavities compared with the original LCLS-II cavity recipe.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP045  
About • paper received ※ 25 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP051 3.9 GHz SRF Production Cavities for LCLS-II cavity, linac, radiation, vacuum 173
 
  • S. Aderhold, A. Burrill
    SLAC, Menlo Park, California, USA
  • D.J. Bice, C.M. Ginsburg, C.J. Grimm, T.N. Khabiboulline, O.S. Melnychuk, D.A. Sergatskov, N. Solyak, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the US DOE and the LCLS-II Project.
The main part of the SRF linac for the Linac Coherent Light Source II (LCLS-II) at SLAC will consist of 35 cryomodules with superconducting RF cavities operating at 1.3 GHz. In addition, two cryomodules with 3.9 GHz cavities will be installed and help to linearize the longitudinal phase space of the beam. During the design verification phase, four prototype 9-cell 3.9 GHz cavities had been built by industry and then processed, including chemical surface removal and heat treatment, and tested at Fermi National Accelerator Laboratory. Based on the resulting cavity treatment recipe, 24 cavities (for two cryomodules to be installed in the linac and one spare cryomodule) have been built by industry and tested at Fermilab prior to cryomodule string assembly. We present an overview of the cavity production and the results of the vertical acceptance tests for the LCLS-II 3.9 GHz cavities.
 
poster icon Poster MOP051 [1.015 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP051  
About • paper received ※ 02 July 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP055 Fabrication and Performance of Superconducting Quarter-Wavelength Resonators for SRILAC cavity, linac, operation, acceleration 182
 
  • K. Suda, O. Kamigaito, K. Ozeki, N. Sakamoto, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  A new superconducting booster linac (SRILAC) at the RIKEN heavy-ion linac is under construction. Ten 73-MHz low-beta quarter-wavelength resonators (QWRs) that operate at 4 K have been fabricated from pure niobium sheets. The cavity parts were assembled by electron beam welding. The resonant frequency for each cavity was adjusted by changing the lengths of the straight sections before welding. The performance and frequency were evaluated by vertical tests. All the cavities exceeded the design specifications of Q0 = 1x109 and Eacc = 6.8 MV/m. Details of the fabrication and frequency tuning as well as the performance of the cavities are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP055  
About • paper received ※ 17 July 2019       paper accepted ※ 13 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP072 FRIB Solenoid Package in Cryomodule and Local Magnetic Shield solenoid, cavity, operation, dipole 235
 
  • K. Saito, H. Ao, B. Bird, R. Bliton, N.K. Bultman, F. Casagrande, C. Compton, J. Curtin, K. Elliott, A. Ganshyn, W. Hartung, L. Hodges, K. Holland, S.H. Kim, S.M. Lidia, D. Luo, S.J. Miller, D.G. Morris, L. Nguyen, D. Norton, J.T. Popielarski, L. Popielarski, T. Russo, J.F. Schwartz, S.M. Shanab, M. Shuptar, D.R. Victory, C. Wei, J. Wei, M. Xu, T. Xu, Y. Yamazaki, C. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama, M. Masuzawa
    KEK, Ibaraki, Japan
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE -SC0000661
FRIB cryomodule design has a feature: solenoid package(s) and local magnetic shields in the cryomodule. In this design, exposing SRF cavities to a very strong fringe field from the solenoid is concerned. A tangled issue between solenoid package design and magnetic shield one has to be resolved. FRIB made intensive studies, designed, prototyped, validated the solenoid packages and magnetic shields, and finally certified them in the bunker test. This paper reports activity results, and LS1 commissioning results in FRIB tunnel. This is a FRIB success story.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP072  
About • paper received ※ 24 June 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP074 External Q Measurement for Quarter Wave Resonators in RISP pick-up, cavity, simulation, coupling 245
 
  • S. Lee, B.H. Choi, M.O. Hyun, Y. Jung, J.W. Kim, Y. Kim, J. Lee, K.T. Seol
    IBS, Daejeon, Republic of Korea
 
  A heavy-ion accelerator facility is under construction for Rare Isotope Science Project(RISP) in Korea. The super conducting cavity, quarter wave resonator(QWR) which consists of driver and post linear accelerator system, is now in the mass production phase. In order to develop the QWR cavity and cryomodule, the RF couplers are fabriacated and tested. In this paper, the study of external Q for QWR coupler will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP074  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP081 Considerations for Efficient RF Operation for the Advanced cw-Linac Demonstrator at GSI cavity, linac, heavy-ion, SRF 267
 
  • C. Burandt, K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, F.D. Dziuba, S. Lauber, J. List
    IKP, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The FAIR@GSI accelerator facility will require the GSI-UNILAC to provide short heavy ion pulses of highest intensity at low repetition rate for injection into the 18 Tm synchrotron SIS18. However, successful physics programs like SHE (Super Heavy Elements) rely on the UNILAC providing for heavy ion beams of high average current and high duty factor. In the next future, a dedicated super-conducting (sc) cw-Linac should therefore deliver cw beams to the experiments associated with those programs. As a first step towards this goal, beam tests with a single sc Cross-bar H-mode (CH) cavity were successfully conducted in 2017/2018. Within the scope of an Advanced Demonstrator project, current activities now aim at a beam test of a full cryomodule with three sc CH cavities and a sc rebuncher. Given a limited amount of rf power available per cavity and the necessity to accelerate different ion species with different mass-to-charge ratios, the loaded quality factor Q of the different resonators has to be chosen very carefully. This contribution discusses the simulations performed in this context.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP081  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP082 Measurement of the Vibration Response of the EXFEL RF Coupler and Comparison With Simulated Data (Finite Element Analyses) FEL, acceleration, interface, resonance 273
 
  • S. Barbanotti, C. Engling, K. Jensch
    DESY, Hamburg, Germany
 
  The coupler is one of the main and most sensitive components of the European X-ray Free Electron Laser (EXFEL) superconducting cryomodule. More than 800 couplers were transported for more than 800 km assembled in a cryomodule during the assembly phase of the EXFEL without any visible damage. However, in a different project, a very similar coupler design showed a week point in one of the bellows when transported over a similar distance with a comparable transport set up. Therefore we decided to further study the coupler behaviour: we investigated the frequency response of the coupler on a vibration table in a controlled environment for different road and loading conditions and compared the data with simulated ones. This paper present the work performed so far and our conclusions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP082  
About • paper received ※ 18 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP087 IFMIF Resonators Development and Performance cavity, SRF, linac, solenoid 293
 
  • G. Devanz, M. Baudrier, P. Carbonnier, F. Éozénou, E. Fayette, D. Roudier, P. Sahuquet, C. Servouin
    CEA-DRF-IRFU, France
  • N. Bazin, S. Chel, L. Maurice
    CEA-IRFU, Gif-sur-Yvette, France
 
  The prototype IFMIF cryomodule encloses eight superconducting 175 MHz beta 0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. One prototype HWR and the 8 cavities to be hosted in the cryomodule have been manufactured, prepared and tested. The paper describes the phases of the cavities development, including fabrication, processing, and RF resonant frequency management. We focus on the results of the RF tests which have been performed for all bare and jacketed HWRs in a vertical cryostat.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP087  
About • paper received ※ 23 June 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP089 Development of a Suspension System for the Road Transportation of Cryomodule SSR1 through a Multilevel Finite Element-Multibody Approach ISOL, cavity, software, simulation 297
 
  • P. Neri, F. Bucchi
    University of Pisa, Pisa, Italy
  • D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  The on-road transportation of cryomodules (CM) is a critical phase during which the structure may be subject to relevant dynamic loading. Thus, an accurate design of Transportation Tool (TT), equipped with a proper suspension system, is mandatory. In this paper the TT design for the PIP-II proto SSR1 CM is presented. A finite element (FE) model was developed considering the main CM parts. However, the full model was not suited for the design of the suspension system because of its computational time. Thus, it was exported as a Modal Neutral File to a multibody (MB) software, where minor components were modeled as rigid bodies or lumped stiffnesses. The reduced MB model considerably shortened the computational time and it was exploited for the design of the TT, which includes helical isolators (HI) acting as a mechanical filter. A real 3D acceleration profile, acquired during the transportation of a LCLS-II CM from Fermilab to SLAC, was used to validate the TT effectiveness in reducing the vibrational loading. In addition, the results of the MB analysis were used to perform FE analysis of critical components, such as bellows.  
poster icon Poster MOP089 [0.995 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP089  
About • paper received ※ 29 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP092 Overview of LCLS-II Project Status at Fermilab SRF, cavity, cryogenics, controls 302
 
  • R.P. Stanek, T.T. Arkan, J.N. Blowers, C.M. Ginsburg, A. Grassellino, C.J. Grimm, B.J. Hansen, E.R. Harms, B.D. Hartsell, J.P. Holzbauer, J.A. Kaluzny, A.L. Klebaner, A. Martinez, T.H. Nicol, Y.O. Orlov, K.S. Premo, N. Solyak, J. Theilacker, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  The superconducting RF Continuous-Wave (CW) Linac for the LCLS-II consists of thirty-five 1.3 GHz and two 3.9 GHz cryomodules that Fermilab and Jefferson Lab are jointly producing in collaboration with SLAC. Fermilab’s scope of work is to build, test, and deliver half the 1.3 GHz and all the 3.9 GHz cryomodules and to design and procure components for the cryogenic distribution system. Fermilab has primary responsibility for delivering a working design. The cryomodule design basis was the European XFEL but several elements evolved to meet CW operation requirements and specifics of the SLAC tunnel. There have been several challenges faced during the design, assembly, testing and transportation of the cryomodules which have required design updates. Success in overcoming these challenges is attributable to the strength of the LCLS-II SRF Collaboration (Fermilab, Jefferson Lab and SLAC with extensive help from DESY and CEA/Saclay). The cryogenic distribution system has progressed relatively well and there are valuable Lessons Learned. An overview of the status, accomplishments, problems encountered, solutions developed, and a summary of Lessons Learned will be presented.  
poster icon Poster MOP092 [0.393 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP092  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP094 Design Strategy of the PIP-II Cryomodules cavity, vacuum, interface, cryogenics 307
 
  • V. Roger, S.K. Chandrasekaran, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan II (PIP-II) is the first U.S. accelerator project that will have significant contributions from international partners. Research institutions in India, Italy, UK and France will build major components of the particle accelerator. The High Beta 650 MHz (HB650) prototype cryomodule is being designed jointly between Fermilab (USA), CEA (France), STFC (UK) and RRCAT (India). The assembly of this prototype cryomodule will be done at Fermilab whereas the production cryomodules will be assembled in UK. Concerning the Low Beta 650 MHz (LB650) cryomodules, they will be designed and assembled at CEA. To reduce the cost of the project and to increase the quality it is essential to define a design strategy for each cryomodule which includes a degree of standardization. In this way, the lessons learned of each prototype cryomodule will have a great impact not only on one cryomodule type but on all cryomodules. An international joint design brings also additional challenges to the project: which unit system should be used? Should a common project lifecycle management system be used for all partners? How to transport the cryomodules overseas.
 
poster icon Poster MOP094 [1.117 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP094  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP097 Preliminary Design of the IFMIF-DONES Superconducting Linac cavity, linac, SRF, neutron 311
 
  • T. Plomion, N. Bazin, N. Chauvin, G. Devanz, J. Plouin, K. Romieu
    CEA-DRF-IRFU, France
  • S. Chel
    CEA-IRFU, Gif-sur-Yvette, France
 
  The linear accelerator for the DONES facility (DEMO oriented neutron source) will serve as a neutron source for the assessment of materials damage in future fusion reactors. The DONES accelerator, which is based on the design of LIPac (Linear IFMIF Prototype Accelerator, which is under construction in Rokkasho, Japan) will accelerate deuterons from 100 keV up to 40 MeV at full CW current of 125 mA. This paper will present the preliminary design of the superconducting linac which is based on five cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP097  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP098 Spoke Cryomodule Prototyping for the MINERVA Project cavity, cryogenics, operation, controls 315
 
  • H. Saugnac, S. Blivet, N. Gandolfo, C. Joly, J. Lesrel, D. Longuevergne, G. Olivier, M. Pierens
    IPN, Orsay, France
  • M.A. Baylac, D. Bondoux, F. Bouly, P.-O. Dumont, Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
  • W. Kaabi
    LAL, Orsay, France
  • W. Sarlin
    IPNO, Orsay, France
 
  In the framework of the MINERVA (MYRRHA 100 MeV) project, a prototyping period started at the end of 2017, has been planned. During this period a prototype cryomodule fully equipped (Spoke Cavities, Cryomodule Vessel, Cold Tuning System, Magnetic shielding, Power Couplers’) as well as its operating and controlling components (LLRF, RF amplifiers’) will be studied and manufactured. The aim of this prototyping period is first to complete the study of all the components and to validate the manufacturing and the assembling procedure in order to freeze the specifications for the serial construction. On the other hand the prototypes will serve as a test stand allowing to study and adjust the "Fault Tolerance" strategy parameters , which is a challenging operating concept specific to the MYRRHA LINAC This poster presents the various tasks related to this Spoke Cryomodule prototyping and their status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP098  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP099 Design of Crab Cavity Cryomodule for HL-LHC cavity, vacuum, cryogenics, operation 320
 
  • T. Capelli, K. Artoos, A.B. Boucherie, K. Brodzinski, R. Calaga, S.J. Calvo, E. Cano-Pleite, O. Capatina, F. Carra, L. Dassa, F. Eriksson, M. Garlasché, A. Krawczyk, R. Leuxe, P. Minginette, E. Montesinos, B. Prochal, M. Sosin, M. Therasse
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by the HL-LHC project
Crab cavities are a key element to achieve the HL-LHC performance goals. There are two types of cavities Double Quarter Wave (DQW) for vertical crabbing, and Radiofrequency Dipole (RFD) for horizontal crabbing. Cavities are hosted in a cryomodule to provide optimal conditions for their operation at 2K while minimizing the external thermal loads and stray magnetic fields. One crab cryomodule contains more than thirteen thousand components and the assembly procedure for the first DQW prototype was carefully planned and executed. It was installed in the SPS accelerator at CERN in 2018 and successfully tested with proton beams. A review has thus been performed right after completion of the assembly in order to gather all the experience acquired and improve accordingly the design of the next generation of crab cryomodules. A second cryomodule with two RFD cavities is currently under production. This paper presents the lessons learnt from the first assembly and their implementation to the design of the future crab cryomodules.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP099  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP100 Design Upgrades of the Next Superconducting RF Gun for ELBE gun, SRF, cavity, cathode 326
 
  • J. Teichert, A. Arnold, S. Ma, P. Murcek, J. Schaber, H. Vennekate, R. Xiang, P.Z. Zwartek
    HZDR, Dresden, Germany
  • K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Funding is provided by the China Scholarship Council.
At the ELBE user facility a superconducting RF photoinjector has been in operation since several years. The injector is routinely applied for THz radiation production in user beam experiments. For future applications higher bunch charges, shorter pulses and lower transverse emittances are required. Thus it is planned to replace this SRF gun by a next version with an RF cavity reaching a higher acceleration gradient. We also present improvements concerning the SC solenoid and the photocathode exchange system and report on the status of construction and testing of this SRF gun cryomodule.
 
poster icon Poster MOP100 [2.199 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP100  
About • paper received ※ 27 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP101 Design and Manufacturing Challenges of the SSR1 Current Leads for PIP-II focusing, vacuum, instrumentation, cryogenics 329
 
  • S. Cheban, D. Passarelli, V. Roger
    Fermilab, Batavia, Illinois, USA
 
  The SSR1 cryomodule contains eight 325 MHz superconducting single spoke cavities and four solenoid-based focusing lenses operating at 2 K. The focusing lens for SSR1 cryomodule, is a superconducting magnet surrounded by a helium box which will be filled with liquid helium. The magnet assembly is composed of one solenoid with operating current 70 A and 2 quadrupoles correctors with operating current 45 A. The conduction cooled current leads will be used to power magnets. The details of current leads design, fabrication and room temperature qualification will be presented. Main emphasis will be put on the design and production process challenges and possible solutions to fulfilled operation requirement under low temperature conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP101  
About • paper received ※ 28 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP102 Alignment Monitoring System for the PIP-II Prototype SSR1 Cryomodule target, alignment, solenoid, survey 332
 
  • S. Cheban, D. Passarelli, S.Z. Zorzetti
    Fermilab, Batavia, Illinois, USA
  • G. Kautzmann
    CERN, Meyrin, Switzerland
 
  For the first prototype PIP-II SSR1 cryomodule, an alignment monitor system based on HBCAM will be used. The main focus will be changes in alignment due to shipping and handling or during cool down and operation process. The SSR1 cryomodule contains eight 325 MHz superconducting single spoke cavities and four solenoid’based focusing lenses, and an alignment error better than 0.5 mm RMS for the transverse solenoid, based on function requirement specification. The alignment monitor system has been configured to the objectives of SSR1 cryomodule: low space for integration; presence of magnetic fields; exposure to non-standard environmental conditions such as high vacuum and cryogenic temperatures. The mechanical design and first results of system performance will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP102  
About • paper received ※ 28 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP002 Modeling of Superconducting Spoke Cavity with its Control Loops Systems for the MYRRHA Linac Project cavity, linac, LLRF, feedback 387
 
  • M. Dominiczak
    ACS, Orsay, France
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • N. Gandolfo, C. Joly
    IPN, Orsay, France
 
  In the construction framework of a future 600 MeV/4 mA CW Superconducting Linac accelerator for the MYRRHA project at SCK’CEN (Mol, Belgium), modeling works under Matlab/Simulink are carried out upstream to understand the behaviour of 352 MHz single Spoke cavity with its environment and its associated feedback control loops (LLRF and cold tuning system). One of the main goal is to assess the feasibility of cavity failure compensation in the Superconducting Linac. Indeed, stringent reliability requirements must be fulfilled to ensure an efficient operation of the MYRRHA Accelerator Driven System: unexpected beam interruptions, due to failures, must be compensated in less than 3 seconds. Our preliminary study focuses on the fast frequency re-tuning of the cavity and the power balances. Our goal is to prepare the R&D tests foreseen at IPN Orsay on a prototype cryomodule including two SC Spoke cavities equipped with couplers, tuners with feedback loop and connected to dedicate LLRF.
Nicolas Gandolfo, IPNO, Orsay (France)
Christophe Joly, IPNO, Orsay (France)
Frédéric Bouly, LPSC, Grenoble (France)
 
poster icon Poster TUP002 [1.335 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP002  
About • paper received ※ 23 June 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP004 Latest Cryogenic Test Results of the Superconducting β=0.069 CH-cavities for the HELIAC-project cavity, linac, vacuum, heavy-ion 392
 
  • M. Basten, M. Busch, T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, J. Salvatore, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, S. Lauber
    IKP, Mainz, Germany
  • F.D. Dziuba, J. List
    KPH, Mainz, Germany
 
  The upcoming FAIR (Facility for Antiproton and Ion Research) project at GSI will use the existing UNILAC (UNIversal Linear Accelerator) as an injector, reducing the beam time for the ambitious Super Heavy Element (SHE) program. To keep the UNILAC user program competitive a new superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC should provide ion beams with max. duty factor above the coulomb barrier. The fundamental sc LINAC design comprises a low energy beam transport (LEBT)-section followed by a sc Drift Tube Linac (DTL) consisting of sc Crossbar-H-mode (CH) structures for acceleration up to 7.3 MeV/u. The latest milestones towards the new cw LINAC HELIAC (HELmholtz LInear ACcelerator) have been the successful tests and commissioning of the first demonstrator section with heavy ion beam in 2017 and 218 as well as the successful test under cryogenic conditions of the second CH-cavity in 2018. Now the third CH-cavity has been tested at cryogenic temperatures of 4 Kelvin at the Institute for Applied Physics (IAP) at Goethe University Frankfurt (GUF). The results of these measurements as well as the status of the HELIAC-project will be presented.  
poster icon Poster TUP004 [0.958 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP004  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP010 Mechanical Design and Horizontal Tests of a Dressed 166.6 MHz Quarter-wave β=1 SRF Cavity System cavity, simulation, superconducting-cavity, SRF 408
 
  • X.Y. Zhang, X.R. Hao, D.B. Li, Z.Q. Li, H.Y. Lin, Q. Ma, Z.H. Mi, Q.Y. Wang, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work has been supported by HEPS-TF project.
A 166.6 MHz quarter-wave β=1 superconducting proof-of-principle cavity has been designed and recently been dressed with a helium jacket, fundamental power coupler and tuner. The cavity was subsequently installed in a modified cryomodule and tested in a horizontal manner at both 4.2 K and 2 K. The helium jacket was successfully developed with a focus on minimizing frequency shift due to helium pressure fluctuation while retaining a reasonable tuning range. The Lorentz force detuning (LFD) and microphonics were also optimized during the design. The df/dp and LFD coefficient were measured to be -3.1 Hz/mbar and -0.8 Hz/(MV/m)2. These are in good agreement with simulations. Future work is mainly to reduce the stiffness of the cavity and further suppress the vibration mode of the inner conductor.
 
poster icon Poster TUP010 [1.245 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP010  
About • paper received ※ 23 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP014 Mechanical Design and Fabrication Aspects of Prototype SSR2 Jacketed Cavities cavity, SRF, interface, electron 424
 
  • M. Parise, D. Passarelli, F. Ruiu
    Fermilab, Batavia, Illinois, USA
  • P. Duchesne, D. Longuevergne, D. Reynet
    IPN, Orsay, France
 
  A total of 35 Superconducting SSR2 spoke cavities will be installed in the PIP II SRF linac at Fermilab and a total of 8 prototype SSR2 cavities will be manufactured for the prototype cryomodule. In this paper, the mechanical design and fabrication aspects of the prototype jacketed SSR2 cavity will be presented. RF and mechanical design activities were conducted in parallel directly on the jacketed cavity in order to minimize the number of design iterations. Also, the lessons learned from other spoke cavities experiences (i.e. SSR1 at Fermilab and ESS double spoke at IPNO) were considered since the early stage of the design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP014  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP031 Heat Treatment for Jacketed Half-wave Resonator Cavity cavity, vacuum, SRF, ECR 482
 
  • Y. Jung, B.H. Choi, D.H. Gil, M.O. Hyun, H. Kim, J.W. Kim, M.S. Kim, D.Y. Lee, J. Lee, S. Lee
    IBS, Daejeon, Republic of Korea
 
  Vertical tests of a prototype half-wave resonator cavity are being tested. The performance of the cavities, such as quality factor and accelerating electrical field, are measured and compared to the target design value. In previous study, we reported the effect of the heat treatment on a prototype bare HWR cavity. We baked a jacketed HWR cavity to improve a performance for 10 h at 650°C. In this study, we will report the effect of the heat treatment on the jacketed HWR cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP031  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP032 Modal Analysis and Vibration Test for Quarter Wave Resonator for RAON cavity, SRF, resonance, controls 485
 
  • M.O. Hyun, H.C. Jung, Y. Kim, M. Lee
    IBS, Daejeon, Republic of Korea
 
  Funding: This paper was supported by the Rare Isotope Science Project (RISP), which is funded by the Ministry of Science and ICT (MSIT) and National Research Foundation (NRF) of the Republic of Korea.
The Rare Isotope Science Project (RISP) in the Institute of Basic Science (IBS), Korea, is developing and con-structing the multi-purpose linear accelerator at the north side of Daejeon, South Korea. RISP accelerator (RAON) is composed with low-energy region (SCL3) and high-energy region (SCL2), and low-energy region is made with quarter-wave resonator (QWR) and half-wave resonator (HWR) when high-energy region is made with single spoke resonator type-1 (SSR1) and type-2 (SSR2). This paper shows about the initial resonance issues of QWR superconducting (SC) cavity during cold test and SRF disturbance measurement. Afterwards, this paper shows the modal analysis and vibration test of QWR SC cavity.
 
poster icon Poster TUP032 [0.584 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP032  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP033 Modal Analysis of the EXFEL 1.3 GHz Cavity and Cryomodule Main Components and Comparison with Measured Data cavity, FEL, vacuum, linac 488
 
  • S. Barbanotti, A. Bellandi, J. Branlard, K. Jensch
    DESY, Hamburg, Germany
 
  Future upgrades of the European X-ray Free Electron Laser (EXFEL) may require driving the linac at higher duty factor, possibly extending to Continuous Wave (CW) mode. An R&D program has started at DESY, to prepare for a CW upgrade. Cryomodules are being tested in CW mode in our CryoModule Test Bench (CMTB) to study the performance and main issues for such an operation mode. Sensitivity to vibration causing microphonics is one of the main concerns for the CW operation in mode. Therefore a detailed analysis is being performed to evaluate the frequency spectrum of the EXFEL cryomodule main components: the cavity itself, the cavity string, the cold mass and the vacuum vessel. Finite Element Modal Analyses have been performed and the results compared with data measured at the CMTB. This paper summarizes the main results and conclusions of such a study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP033  
About • paper received ※ 18 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP034 Microphonics Testing of LCLS II Cryomodules at Jefferson Lab cavity, background, cryogenics, vacuum 493
 
  • T. Powers, N.C. Brock, G.K. Davis
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
Jefferson Lab is partnering with Fermilab to build the 36 cryomodules for the LCLS II accelerator that will be installed at SLAC. The cavities have design loaded-Q of 4×107, which means that it has a control bandwidth of 16 Hz. The JLab prototype cryomodule was instrumented with a series of seven accelerometers, and impulse hammer response measurements were made while the cryomodule was being built and after it was installed in the JLab cryomodule test facility. This was done so that we could understand the shapes of the modes of the structure. These results were compared to impulse hammer testing from the outside of the cryomodule and to individual cavity frequency shifts when the cryomodule was cold. The prototype cryomodule had excessive microphonics of 150 Hz peak due to a thermos-acoustic oscillation. Design modifications were implemented and subsequently the cryomodules had microphonics on the order of 10 to 20 Hz. Results of the modal analysis as well as the background microphonics observed when operated under various cryogenic conditions and with different modifications will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP034  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP037 Construction of Superconducting Linac Booster for Heavy-Ion Linac at RIKEN Nishina Center linac, vacuum, controls, booster 502
 
  • K. Yamada, T. Dantsuka, H. Imao, O. Kamigaito, K. Kusaka, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, T. Watanabe, Y. Watanabe
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  At RIKEN Nishina Center, the RIKEN Heavy-Ion Linac (RILAC) is undergoing an upgrade of its acceleration voltage in order to allow it further investigation of new super-heavy elements. In this project, a new superconducting (SC) booster linac, so-called SRILAC, is being developed and constructed. The SRILAC consists of 10 TEM quarter-wavelength resonators made of pure niobium sheets which operate at 4 K. The target performance of each cavity is set as Q0 of 1×109 with its accelerating gradient of 6.8 MV/m. Recently we succeeded to develop high performance SC-cavities which satisfies the requirement with a wide margin. The cryomodule assembly is under way, and installation of cryomodules and He liquefaction system will be completed by the end of FY2018. The cooling-down test is scheduled in the Q1 of FY2019. This contribution makes a report on the construction status of the SRILAC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP037  
About • paper received ※ 02 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP041 SRF testing for Mainz Energy Recovering Superconducting Accelerator MESA cavity, SRF, radiation, controls 508
 
  • T. Stengler, K. Aulenbacher, F. Hug, S.D.W. Thomas
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: This work is supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA+" EXC 2118/2019
The two superconducting radio frequency acceleration cryomodules for the new multiturn ERL ’Mainz Energy Recovering Superconducting Accelerator’ MESA at Johannes Gutenberg-Universität Mainz have been fabricated and are currently under testing at the Helmholtz Institut Mainz. These modules are based on the ELBE modules of the Helmholtz Center Dresden-Rossendorf but are modified to suit the high current and energy-recovering operation at MESA. The energy gain per module per turn should be 25 MeV, provided by two TESLA cavities, which were vertically tested at DESY, Hamburg, Germany. These tests showed an excellent performance of the quench limit and quality factor for three out of the four cavities. The fourth cavity has a lower but still acceptable quench limit and quality factor. In order to validate the performance of the fully assembled cryomodules after delivery to Mainz a test stand has been set up at the Helmholtz Institut Mainz. The test stand is described in detail and the status of the module testing is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP041  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP042 Measurement of Mechanical Vibration of SRILAC Cavities cavity, niobium, linac, ECR 513
 
  • O. Kamigaito, K. Ozeki, N. Sakamoto, K. Suda, K. Yamada
    RIKEN Nishina Center, Wako, Japan
 
  Mechanical vibration of quarter-wavelength resonators of SRILAC, the superconducting booster of the RIKEN heavy-ion linac, was measured during a vertical cold test. The measurements were performed for fully assembled cavities as well as for bare niobium cavities without the titanium jacket. In the procedure, the instantaneous resonant frequencies were measured for 10 seconds at a time interval of 1 ms and were recorded as a time series. The frequencies were analyzed by means of conventional signal analysis. The power spectrum was deduced from the autocorrelation function calculated with the fluctuation of resonant frequencies. Although the vibration amplitudes were smaller in the cavities assembled with the titanium jacket, we could not find a clear reason for this.  
poster icon Poster TUP042 [6.957 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP042  
About • paper received ※ 27 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP081 Status of the HL-LHC Crab Cavity Tuner cavity, GUI, SRF, vacuum 646
 
  • K. Artoos, L. Arnaudon, R. Calaga, E. Cano-Pleite, O. Capatina, T. Capelli, D.F. Cartaxo dos Santos, M. Garlasché, D.C. Glenat, A. Krawczyk, R. Leuxe, P. Minginette, J.S. Swieszek
    CERN, Geneva, Switzerland
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
 
  Funding: Research supported by the HL-LHC project
The resonance frequency of the HL-LHC Double Quarter Wave (DQW) and Radio Frequency Dipole (RFD) crab cavities is set to the operating frequency of 400.79 MHz by deforming the cavities. For both types of cavities, the tuning principle foresees a symmetric mechanical deformation of parts of the cavities in vertical direction, with the tuner motor placed outside on top of the vacuum vessel. The tuner design was successfully tested on the DQW prototype cryomodule with two cavities in 2018 in the SPS at CERN. This paper describes the design of DQW and RFD crab tuners. The experience and results of assembly and cold testing is given together with some required improvements. Finally, the final series crab tuners preparation is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP081  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP083 Performance of the 650 MHz SRF Cavity Tuner for PIP II Project cavity, SRF, interface, resonance 652
 
  • Y.M. Pischalnikov, S.K. Chandrasekaran, S. Cheban, I.V. Gonin, T.N. Khabiboulline, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
 
  The PIP-II linac will include fifty seven 650MHz SRF cavities. Each cavity will be equipped with tuner for coarse and fine frequency tuning. Design and operations parameters will be discussed. Results from room temperature tests with prototype tuner installed on a 650MHz ’G=0.90 elliptical cavity will be presented.  
poster icon Poster TUP083 [1.567 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP083  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP089 FRIB LS1 Cryomodule’s Solenoid Commissioning solenoid, MMI, controls, linac 671
 
  • M. Xu, H. Ao, B. Bird, R. Bliton, C. Compton, J. Curtin, L. Hodges, K. Holland, S.J. Miller, K. Saito, T. Xu, C. Zhang
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
The Facility for Rare Isotope Beams (FRIB) is a heavy ion accelerator that produces rare isotopes for science. To achieve the high beam quality of FRIB’s linear accelera-tor (linac), the superconducting solenoid packages are employed for beam focusing and steering in the cry-omodule. The solenoid packages will generate a maxi-mum 8T focusing field along beam direction and 0.124 T bending field for beam steering. A total 74 solenoid packages have been produced and the first segment linac (LS1) of FRIB have completed commissioning and beam acceleration. In this paper, the cryomodule’s solenoid commissioning and the performance of the LS1 linac are introduced. The lessons learned during the testing will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP089  
About • paper received ※ 24 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP092 Experiences of Superconducting Radio Frequency Coldmass Production for the FRIB Linear Accelerator cavity, vacuum, solenoid, SRF 675
 
  • K. Elliott, B.W. Barker, C. Donald, E.S. Metzgar, L. Popielarski, D.R. Victory, J.D. Whaley, M.S. Wilbur
    FRIB, East Lansing, Michigan, USA
 
  Funding: *Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
The superconducting radio frequency (SRF) portion of the Facility for Rare Isotope Beams (FRIB) linear accelerator consists of 46 cryomodules of 6 different types. Each cryomodule contains a coldmass consisting of a string of SRF resonators. There are four different types of resonators; a β=0.041 quarter wavelength resonator (QWR), a β=0.085 QWR, a β=0.29 half wavelength resonator (HWR), and a β=0.53 HWR. In total there are 324 SRF resonators in the FRIB linear accelerator. This paper provides a summary of experiences from the assembly of all FRIB coldmass types in a clean room environment.
 
poster icon Poster TUP092 [1.481 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP092  
About • paper received ※ 23 June 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP094 Improvements to LCLS-II Cryomodule Transportation cavity, vacuum, ISOL, SRF 684
 
  • N.A. Huque, E. Daly, P.D. Owen
    JLab, Newport News, Virginia, USA
  • B.D. Hartsell, J.P. Holzbauer
    Fermilab, Batavia, Illinois, USA
 
  The Linear Coherent Light Source (LCLS-II) is currently being constructed at the SLAC National Laboratory. A total of 35 cryomodules will be fabricated at Jefferson Lab (JLab) in Virginia and Fermi National Laboratory (FNAL) in Illinois and transported via road to SLAC. A shipping frame with an inner bed isolated by springs was designed to protect the CMs from shocks and vibrations during shipments. Successful road testing of the JLab prototype paved the way for production CM shipments. The initial production shipments lead to several catastrophic failures in beamline vacuum in the cryomodules. The failures were determined to be due to fatigue in Fundamental Power Coupler (FPC) bellows due to excessive motion during shipment. A series of instrumented CM shipping tests and component tests were undertaken to develop a solution. A modified spring layout was tested and implemented, which reduced shocks on the CMs. FPC coupler bellows restraints were tested on a shaker table and on a CM during shipping; they were able to reduce bellows motion by a factor of three. The updated shipping system is currently in use and has successfully delivered six cryomodules to SLAC from JLab and FNAL.  
poster icon Poster TUP094 [0.958 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP094  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP095 Lessons Learned Assembling the SSR1 Cavities String for PIP-II cavity, vacuum, solenoid, SRF 690
 
  • D. Passarelli, D.J. Bice, M. Parise, T.J. Ring, G. Wu
    Fermilab, Batavia, Illinois, USA
  • S. Berry
    CEA-DRF-IRFU, France
 
  The string assembly of the prototype Single Spoke Resonator type 1 (SSR1) cryomodule for PIP-II at Fermilab was successfully completed. Lessons learned from the preparation, assembly and the quality control activities of the final fully integrated assembly will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP095  
About • paper received ※ 28 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP096 Optimization of Clean Room Infrastructure and Procedure During LCLS-II Cryomodule Production at Fermilab cavity, vacuum, detector, linac 695
 
  • G. Wu, S.D. Adams, T.T. Arkan, M.A. Battistoni, D.J. Bice, M.B. Chlebek, E.R. Harms, B.M. Kuhn, A.M. Rowe
    Fermilab, Batavia, Illinois, USA
  • S. Berry, O. Napoly
    CEA-DRF-IRFU, France
 
  Funding: The work is supported by Fermilab which is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Optimization of Fermilab string assembly procedure and infrastructure has yielded a significant improvement of cryomodule particulate counts. Late production of LCLS-II cryomodules were tested at CMTF at Fermilab and showed little to no x-ray up to administrative limit. The paper describes the field emission measurement instrumentation, field emission results of LCLS-II cyomodules, clean room infrastructure upgrade and procedure optimization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP096  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP098 Preparation for the Advanced Demonstrator Testing at GSI cavity, solenoid, linac, heavy-ion 698
 
  • V. Gettmann, K. Aulenbacher, W.A. Barth, F.D. Dziuba, M. Heilmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba, S. Lauber
    IKP, Mainz, Germany
  • M. Basten, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The superconducting (sc) heavy ion Helmholtz Linear Accelerator (HELIAC) is under development at GSI. As a first step, the cw-Linac demonstrator was the first part for the proposed cw-LINAC@GSI. A superconducting CH-cavity, embedded by two superconducting solenoids has been tested with beam in 2017/2018 successfully. The sc CH-structure, designed at Goethe-University of Frankfurt, is the key component and offers a variety of research and development. As a next step the first cryostat of the HELIAC, the so called Advanced Demonstrator will be tested in the same testing environment at GSI. Therefore, a bigger concrete Bunker as well as the connection to the cryo plant is under development. The cold string was assembled in a rehabilitated clean room at GSI. For future clean room assemblies a fully equipped clean room is under preparation at Helmholtz-Institut Mainz. The mechanical suspension, composed of hanging components on crossed steel ropes, is a reliable concept to prevent the displacement during cool down. The cryogenic systems as well as all other mechanical tasks were solved. These and the future Advanced Demonstrator preparation will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP098  
About • paper received ※ 22 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP099 Particulate Sampling and Analysis During Refurbishment of Prototype European XFEL Cryomodule cavity, FEL, SRF, superconductivity 701
 
  • N. Krupka, C. Bate, D. Reschke, S. Saegebarth, M. Schalwat, P. Schilling, S. Sievers
    DESY, Hamburg, Germany
 
  Funding: This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Tech-nologies (MT) Program.
The cryomodule PXFEL31 is one of three prototype cryomodules for the European XFEL. In preparation of the series module assembly it was used for the qualification of infrastructure and personnel at CEA Saclay. After transport and tests at DESY the cryomodule was stored for several years. Last year we decided to refurbish this module with new cavities for the installation in the FLASH accelerator. During the disassembly of the cavity string in the clean room at DESY we took several particulate samples for analysis. Optical and laser optical microscopy give us an insight on the quantity and type of the particulates. We expect to get hints where the particulates come from and how they are transported through the cavity string during transport and operation.
 
poster icon Poster TUP099 [2.599 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP099  
About • paper received ※ 23 June 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP101 LCLS-II Cryomodules Production Experience and Lessons Learned at Fermilab vacuum, cavity, FEL, linac 709
 
  • T.T. Arkan, J.N. Blowers, C.M. Ginsburg, C.J. Grimm, J.A. Kaluzny, T.H. Nicol, Y.O. Orlov, K.S. Premo, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  LCLS-II is a planned upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II Linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab are currently producing in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Two prototype cryomodules had been assembled and tested. After prototype cryomodule tests, both laboratories have increased their cryomodule production rate to meet the challenging LCLS-II project installation schedule requirements of approximately one cryomodule per month per laboratory. To date, Fermilab has completed the assembly and testing of sixteen 1.3 GHz cryomodules. Fermilab has successfully shipped five CMs to SLAC and will continue to ship with a two-week throughput. The first 3.9 GHz cryomodule assembly is scheduled to start in June 2019; production readiness verifications are in progress. This paper presents LCLS-II cryomodule assembly and production experience, emphasizing the challenges, the mitigations and lessons learned  
poster icon Poster TUP101 [0.834 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP101  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP102 Superconducting Harmonic Cavity for Bunch Lengthening in the APS Upgrade cavity, HOM, photon, operation 715
 
  • M.P. Kelly, Z.A. Conway, M. Kedzie, S.W.T. MacDonald, T. Reid, U. Wienands, G.P. Zinkann
    ANL, Lemont, Illinois, USA
 
  A superconducting cavity based Bunch Lengthening System is under construction for the Argonne’s Advanced Photon Source (APS) Upgrade. The system will reduce the undesirable effects of Touschek scattering on the beam lifetime by providing bunch lengthening in the longitudinal direction by 2-4 times. The major technical components for the beam-driven 1.4 GHz fourth harmonic superconducting cryomodule are in hand and have been tested. These include a superconducting cavity, cw rf power couplers, a pneumatic cavity slow tuner and beamline higher-order mode absorbers. Initial assembly and engineering testing of the cryomodule is underway. Final integrated testing will be complete in 2021. Transportation to and commissioning in the APS is planned for 2022-23.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP102  
About • paper received ※ 08 July 2019       paper accepted ※ 12 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP103 Pansophy Data as Used to Develop Metrics and Evaluate Trends Across SRF Projects and Facilities to Further Quality Improvement Initiatives database, status, SRF, cavity 718
 
  • M.G. McDonald, V.D. Bookwalter, M. Dickey, E.A. McEwen
    JLab, Newport News, Virginia, USA
 
  Pansophy, a JLAB SRF engineering data management system (EDMS), is composed of a collection of technolo-gies that together provide for the collection, management and analysis of data for the production and testing of cavities and cryomodules. From its inception in 2000, when data collection was a priority for such projects as SNS, CEBAF 12GeV upgrade, LCLS-II, and in the future the SNS-PPU, the focus has turned to data analysis and reporting on quality metrics and key performance indica-tors (KPIs). Reporting enhancements include monthly quality metrics, project specific KPIs, and trending across projects. With the use of Pareto Charts to help analyze vendor quality and non-conformance, timelines of pro-ject and facility metrics, project managers and subject matter experts (SME) are able to look for trends and pre-pare further quality improvement initiatives for their projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP103  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP104 Improvement of a Clean Assembly Work for Superconducting RF Cryomodule and Its Application to the KEK-STF Cryomodule cavity, vacuum, controls, SRF 721
 
  • H. Sakai, E. Kako, T. Konomi, K. Umemori, Y. Yamamoto
    KEK, Ibaraki, Japan
  • T. Ebisawa, A. Kasugai
    QST, Aomori, Japan
 
  We usually encountered the degradation of the superconducting RF cavities on the cryomodule test even though the performance of these cavities was good on the vertical test. In reality, the degradation of Q-values of two cavities of cERL main-linac were observed after cryomodule assembly in KEK [1] and STF cryomodule also met the degradation after the cryomodule assembly [2]. Some dusts and invisible particles might enter the cavity and generate field emission during the assembly work. Field emission is the most important cause of this degradation. In this paper, first we introduce some trials for the improved clean assembly work to SRF cavity by re-examining our clean assembly work and vacuum work. For example, slow pumping system with vacuum particle monitor was developed to know and control the particle movement during slow pumping and venting. Next we show the application of this improved work to the STF re-assemble cryomodule work in KEK.
[1} H. Sakai et al., SRF’13, Paris, France, p.855, 2013.
[2] Y. Yamamoto et al., IPAC’16, Busan, Korea, p.2158, 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP104  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP105 Preparation of the Cryomodule Assembly for the Linear IFMIF Prototype Accelerator (LIPAc) in Rokkasho vacuum, cavity, operation, SRF 726
 
  • T. Ebisawa, A. Kasugai, K. Kondo, S. Maebara, K. Sakamoto
    QST, Aomori, Japan
  • N. Bazin, S. Berry
    CEA-DRF-IRFU, France
  • P. Cara
    IFMIF/EVEDA, Rokkasho, Japan
  • H. Dzitko, G. Phillips
    F4E, Germany
  • E. Kako, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The staged installation and commissioning of LIPAc is ongoing at Rokkasho Fusion Institute of QST, Japan for validating the low energy section of the IFMIF deuteron accelerator up to 9 MeV. The LIPAc Superconducting Radio Frequency accelerator (SRF) cryomodule is assembled under the responsibility of the EU Home Team, and the assembly work recently started at Rokkasho in March 2019. To fulfil the cleanliness requirements for the assembly process, QST took the responsibility to prepare the infrastructure of a cleanroom and associated devices. In this present paper, the details of the preparation work for the cryomodule assembly made by QST will be presented.  
poster icon Poster TUP105 [2.116 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP105  
About • paper received ※ 17 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP106 Mechanical Tuner for a 325 MHz Balloon Single Spoke Resonator cavity, linac, simulation, operation 730
 
  • R.E. Laxdal, J.J. Keir, B. Matheson, N. Muller, Z.Y. Yao
    TRIUMF, Vancouver, Canada
 
  TRIUMF has designed, fabricated and tested the first balloon variant of the single spoke resonator at 325 MHz and β=0.3. TRIUMF has also designed and built a mechanical tuner as part of the development. The tuner employs a nutcracker lever pressing at the beam ports driven by a scissor jack. The scissor is actuated through a tube coupling to a warm ball-screw and servo-motor located outside the cryostat. The design and warm tests of the tuner will be presented.  
poster icon Poster TUP106 [1.089 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP106  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA3 Status of the IFMIF/EVEDA Superconducting Linac cavity, SRF, solenoid, linac 735
 
  • N. Bazin, G. Devanz, H. Jenhani, O. Piquet
    CEA-DRF-IRFU, France
  • S. Chel
    CEA-IRFU, Gif-sur-Yvette, France
  • T. Ebisawa
    QST, Aomori, Japan
  • G. Phillips
    F4E, Germany
  • D. Regidor, F. Toral
    CIEMAT, Madrid, Spain
 
  The IFMIF accelerator aims to provide an accelerator-based D-Li neutron source to produce high intensity high energy neutron flux to test samples as possible candidate materials to a full lifetime of fusion energy reactors. A prototype of the low energy part of the accelerator (LIPAc) is under construction at Rokkasho Fusion Institute in Japan. It includes one cryomodule containing 8 half-wave resonators (HWR) operating at 175 MHz and eight focusing solenoids. The talk will cover the progress of developments in the IFMIF/EVEDA cryomodule: the qualification of 8 cavities, the RF conditioning results of 8 high-power couplers, the manufacturing and test of the 8 superconducting solenoids and the equivalent operational equivalent tests performed at Saclay. The assembling status of the cryomodule at Rokkasho site will also be presented.  
slides icon Slides WETEA3 [11.091 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA3  
About • paper received ※ 20 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA5 FRIBCavity and Cryomodule Performance, Comparison with the Design and Lessons Learned alignment, solenoid, vacuum, cavity 742
 
  • S.J. Miller, H. Ao, B. Bird, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, J. Curtin, K. Elliott, A. Facco, V. Ganni, I. Grender, W. Hartung, J.D. Hulbert, S.H. Kim, P. Manwiller, E.S. Metzgar, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, M. Shuptar, J. Simon, B.P. Tousignant, D.R. Victory, J. Wei, J.D. Wenstrom, K. Witgen, M. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) requires the production of 46 cryomodules. Design is complete on all six cryomodule types which utilize four superconducting radio frequency (SRF) cavity designs and superconducting solenoids. The FRIB cryomodules utilize an innovative bottom up approach to achieve alignment tolerance and simplify production assembly. The cryomodule testing includes qualification of the resonator performance, fundamental power couplers, tuners, and cryogenic systems. FRIB beam commissioning has been performed on 15 cryomodules in the FRIB and validates the FRIB cryomodule bottom up assembly and alignment method. This paper will report the FRIB cryomodule design, performance, and the alignment results and their impact on beam commissioning.
 
slides icon Slides WETEA5 [14.640 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA5  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEB1 Development of Superconducting Quarter-Wave Resonator and Cryomodule for Low-Beta Ion Accelerators at RIKEN Radioactive Isotope Beam Factory cavity, linac, vacuum, SRF 750
 
  • N. Sakamoto, T. Dantsuka, M. Fujimaki, H. Imao, O. Kamigaito, K. Kusaka, H. Okuno, K. Ozeki, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  A prototype cryomodule with a superconducting quarter- wave resonator (SC QWR) has been developed at RIKEN Radioactive Isotope Beam Factory (RIBF). During the last SRF conference, we presented the performance of our first SC QWR and the first cool-down test of its cryomodule. Since then, we have continued our efforts to improve cavity performance and succeeded in recovering deteriorated Q0. In this paper, we report what we constructed and learned from the prototype, including design issues with the cavity and its cryomodule. Design issues related to the new SC QWRs and their cryomodules for the SC linac booster of the RIKEN Heavy-Ion Linac (RILAC) are described as well.  
slides icon Slides WETEB1 [120.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB1  
About • paper received ※ 24 June 2019       paper accepted ※ 05 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEB2 Identifying Specific Cryomodule and Cleanroom Particulate Contamination: Understanding Legacy Issues and Providing New Feedback Standards cavity, SRF, GUI, feedback 758
 
  • C.E. Reece, J.K. Spradlin, O. Trofimova, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
While the techniques used to provide "UHV clean" and "particle-free" beamline components, including SRF cavities, continue to evolve, "real-world" operating machines must deal with actual accumulated and latent contamination issues that produce non-trivial cryogenic heatload, radiation, activation, and degradation via field emission. We have developed a standardized and automated particulate contamination assay method for use in characterizing particulates found on beamline components and in cleanroom assembly environments. We present results from using this system to analyze samples taken from reworked cryomodules from CEBAF. Particle sizes are much larger than anticipated. Utility for feedback on sources to enable improved source reduction is explored.
 
slides icon Slides WETEB2 [13.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB2  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEB3 CEBAF C100 Fault Classification based on Time Domain RF Signals cavity, controls, vacuum, operation 763
 
  • T. Powers, A.D. Solopova
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The CEBAF 12 GeV upgrade project, which was completed and commissioned in 2014, included the construction and installation of 80 new 7-cell superconducting cavities that were configured in 10 cryomodules. In 2018, the software and hardware in the digital low level RF systems were configured such that a fault would trigger an acquisition process which records waveform records of 17 of the RF signals for each of the 8 cavities within the cryomodule for subsequent analysis. These waveforms are especially useful in C100 cryomodules as there is a 10% mechanical coupling between adjacent cavities. When one cavity has a fault and the gradient is reduced quickly, it will mechanically deform due relaxation of the Lorentz force effects. This deformation change causes perturbations in the adjacent cavities which, in turn, causes a cascade of cavity faults that are difficult to understand without the time domain data. This contribution will describe the types of faults encountered during operation and their signatures in the time domain data, as well as how is being used to modify the setup of the machine and implement improvements to the cryomodules.
 
slides icon Slides WETEB3 [3.169 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB3  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP028 Superconducting RF Modules of TARLA electron, rf-amplifier, cavity, MMI 900
 
  • Ç. Kaya, Ö. Karslı, İ.B. Koç
    Ankara University, Accelerator Technologies Institute, Golbasi, Turkey
  • A. Aksoy, O.F. Elçim
    Ankara University Institute of Accelerator Technologies, Golbasi, Turkey
 
  The Turkish Accelerator and Radiation Laboratory (TARLA) is proposed as an accelerator-based radiation source facility to provide a research instrument for researchers from both Turkey and region. The facility is located at the Ankara University Institute of Accelerator Technologies and proposed as the first accelerator based research infrastructure in Turkey. The superconducting accelerator of TARLA is currently under commissioning and will drive two Free Electron Laser (FEL) lines in the mid- and far-infrared ranges and a high flux Bremsstrahlung radiation to 40 MeV electron beam in Continuous Wave (CW) mode. The SRF cryomodules have been delivered by industry in 2017. In this paper, we present the achieved vertical test results of the SRF cavities, the results of the high power RF test of the fundamental power couplers and the first test results of the integrated piezo tuner. After the successful commissioning of the cryogenic plant operating at 1.8 K with ±0.2 mbar pressure stability, the commissioning of the SRF cryomodules is now ongoing and the current status and results achieved so far are explained.  
poster icon Poster THP028 [1.996 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP028  
About • paper received ※ 28 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP031 Operation Experience with the LHC ACS RF System cavity, operation, injection, MMI 911
 
  • K. Turaj, L. Arnaudon, P. Baudrenghien, O. Brunner, A.C. Butterworth, F. Gerigk, M. Karppinen, P. Maesen, E. Montesinos, F. Peauger, G.J. Rosaz, E.N. Shaposhnikova, D. Smekens, M. Taborelli, M. Therasse, H. Timko, D. Valuch, N. Valverde Alonso, W. Venturini Delsolaro
    CERN, Meyrin, Switzerland
 
  The LHC accelerating RF system consists of two cryomodules per beam, each containing four single-cell niobium sputtered 400.8 MHz superconducting cavities working at 4.5 K and an average accelerating voltage of 2 MV. The paper summarises the experience, availability and evolution of the system within 10 years of operation. The lessons learned from the successful replacement and re-commissioning of one cryomodule with a spare module, and the recent re-test of the originally installed module on the test stand are also included. Finally, a review of currently launched spare cavity production and long-term developments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP031  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP033 Cryogenic Systems Studies for the MINERVA 100 MeV Proton SC LINAC Project cryogenics, linac, cavity, proton 918
 
  • O. Kochebina, F. Dieudegard, T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  The construction of the first phase of the MYRRHA project (MINERVA: 100 MeV-4 mA proton Linac) was recently decided by the Belgium Government. In the long term, the MYRRHA project plans to construct an ADS demonstrator for the transmutation of long-lived radioactive waste. It will include a subcritical reactor of 100 MW thermal power and a CW proton Linac accelerator (600 MeV-4 mA). The main challenge of this Linac is an extremely high reliability performance to limit stresses and long restart procedures of the reactor. The MINERVA Linac includes 30 cryomodules housing 60 Single-Spoke SC cavities. A cryomodule prototype with its valve box is under construction at IPNO institute. The cavities operate at 352 MHz in a superfluid Helium bath at 2K. Therefore, a reliable SC Linac Cryogenic System is essential. This article presents the preliminary studies in this subject including the analysis of high thermal loads induced by the CW mode operation of cavities (950 W@2 K per cryomodule). A Cryogenic Refrigerator with an equivalent power capacity of 2645 W @4.5 K (3970 W with 1.5 overcapacity factor) is proposed. The constrains for the He distribution in the Linac tunnel are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP033  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP046 Magnetic Field Mapping System for Cornell Sample Host Cavity cavity, SRF, monitoring, radio-frequency 961
 
  • S.N. Lobo, M. Liepe, T.E. Oseroff
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Cornell Laboratory for Accelerator-Based Sciences and Education
Dissipation due to flux trapping is a persistent problem experienced in SRF cavity testing and cryomodule operation. This work addresses accurately and cheaply measuring magnetic fields in a cryostat without using delicate and expensive fluxgate magnetometers. Anisotropic Magnetoresistive (AMR) magnetic field sensors were investigated for the detection of small fields in a cryogenic environment. Initial development of instrumentation using 16 AMR sensors is presented for the purpose of measuring magnetic fields perpendicular the normal of a 5" diameter sample plate on the Cornell sample host cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP046  
About • paper received ※ 29 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP049 Commissioning the JLab LERF Cryomodule Test Facility controls, cavity, LLRF, MMI 973
 
  • C. Hovater, R. Bachimanchi, E. Daly, M.A. Drury, L.E. Farrish, J. Gubeli, N.A. Huque, K. Jordan, M.E. Joyce, L.K. King, M. Marchlik, W. Moore, T.E. Plawski, A.D. Solopova, C.M. Wilson
    JLab, Newport News, Virginia, USA
  • A.L. Benwell, C. Bianchini, D. Gonnella, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti, B.H. Ripman, S. Saraf, L.M. Zacarias
    SLAC, Menlo Park, California, USA
  • L.R. Doolittle, S. Paiagua, C. Serrano
    LBNL, Berkeley, California, USA
 
  The JLab Low Energy Recirculating Facility, LERF, has been modified to support concurrent testing of two LCLS-II cryomodules. The cryomodules are installed in a similar fashion as they would be in the L1 section of the LCLS-II linac, including the floor slope and using all of the LCLS-II hardware and controls for cryomodule cryogenics, vacuum, and RF (SSA and LLRF). From the start, it was intended to use LCLS-II electronics and EPICS software controls for cryomodule testing. In affect the LERF test facility becomes the first opportunity to commission and operate the LCLS-II LINAC hardware and software controls. Support for specific cryomodule high level test applications like Q0 and HOMs measurements, are being developed from the basic cryomodule control suite. To support the testing, 2 K He is supplied from the CEBAF south linac cryogenic system, where care must be taken when using the LERF test facility to not upset the CEBAF cryogenics plant. This paper discusses the commissioning of the hardware and software development for testing the first two LCLS-II cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP049  
About • paper received ※ 22 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP051 Upgrades to Cryogenic Capabilities for Cryomodule Testing at JLab cavity, cryogenics, operation, HOM 983
 
  • N.A. Huque, E. Daly, T. Wijeratne
    JLab, Newport News, Virginia, USA
 
  The cryogenic facilities for cryomodule testing at Jefferson Lab (JLab) have been modified and to enable testing of Linear Coherent Light Source-II (LCLS-II) cryomodules. Temporary changes in u-tube connections at the Cryogenic Test Facility (CTF) has enabled rates of cavity cooling that are a factor of 10 higher than previously achieved. Cryogenic connections at JLab’s Low Energy Recirculator Facility (LERF) have been repurposed to enable two LCLS-II cryomodules to be tested in series. This testing shares the helium space with the Central Helium Liquefier (CHL) that is also used by the Continuous Electron Beam Accelerator Facility (CEBAF). Cryomodule testing can occur while beam operation is ongoing at CEBAF. Improvements to these facilities have allowed the testing of the JLab’s highest ever performing cryomodules.  
poster icon Poster THP051 [0.722 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP051  
About • paper received ※ 20 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP052 Pansophy Enhancements for SRF Through Collecting and Analyzing Inputs/Outputs to Further Project Efficiency in Reporting and Performance cavity, status, feedback, monitoring 988
 
  • V.D. Bookwalter, M. Dickey, M.G. McDonald, E.A. McEwen
    JLab, Newport News, Virginia, USA
 
  SRF Cavity and Cryomodule testing and production requires a consistent means of collecting and analyzing data against quality and production parameters. JLab’s engineering data management system, Pansophy, is utilized to assist project leaders and subject matter experts (SMEs) with such tasks, by providing a means to data mine key parameter indicators (KPI) and production planning and status data. Recent enhancements to reporting and trending have been utilized for the LCLS-II and CEBAF 12 GeV upgrade projects. Further enhancements are being planned for future projects, like SNS-PPU, such as KPI trending, KPI quality, vendor quality, production timelines and user defined queries. Being able to understand past trends will assist with enhancements to future projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP052  
About • paper received ※ 21 June 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP053 Analysis of the Results of the Tests of IFMIF Accelerating Units cavity, SRF, vacuum, linac 992
 
  • N. Bazin, S. Chel, M. Desmons, G. Devanz, H. Jenhani, O. Piquet
    CEA-DRF-IRFU, France
 
  The prototype IFMIF-EVEDA cryomodule encloses eight superconducting 175 MHz β=0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. Two cavity packages, complete with tuning system and power couplers, have been tested in a dedicated horizontal test cryostat - SaTHoRI (Satellite de Tests HOrizontal des Résonateurs IFMIF). The successful operational equivalent tests and tuning of the SRF accelerating units is reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP053  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP054 Cryogenic Installations for Module Tests at Mainz cryogenics, operation, SRF, cavity 997
 
  • F. Hug, K. Aulenbacher, E. Schilling, D. Simon, T. Stengler, S.D.W. Thomas
    KPH, Mainz, Germany
  • K. Aulenbacher, T. Kürzeder
    HIM, Mainz, Germany
  • A. Skora
    IKP, Mainz, Germany
 
  Funding: This work is supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA+" EXC 2118/2019
At Helmholtz Institute Mainz a cryomodule test bunker has been set up for testing dressed modules at 2 K. In a first measurement campaign the high power rf tests of two 1.3 GHz cryomodules for the future MESA accelerator have been performed. We will report on the performance of the test setup, the present and upcom-ing cryogenic installations at the Institute for Nuclear Physics at Mainz, and in particular on the Helium re-frigeration and transport system comprising of a 220 m transport line for liquified gases.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP054  
About • paper received ※ 29 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP055 Magnetic Field Induced by Thermo Electric Current in LCLS-II Cryomodules cavity, SRF, niobium, vacuum 1003
 
  • G. Wu, S.K. Chandrasekaran
    Fermilab, Batavia, Illinois, USA
 
  Funding: The work is supported by Fermilab which is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Seebeck effect of metals play an important role in cryomodule design. As cryomodule cools down from room temperature down to nominal cavity operating temperature, components in a cryomodule experiences different temperatures. Some components such as power couplers cross from room temperature to 2 K. Thermo electric current forms loops circulating through and around cavities. Such current loops will generate additional magnetic field that could be trapped into cavity wall during superconducting transition as well as during cavity quench. These trapped field can degrade cavity quality factor and increase heat load. Simple circuit model is proposed and compared to calculated trapped field during cryomodule tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP055  
About • paper received ※ 26 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP056 Current Results From Acceptance Testing of LCLS-II Cryomodules at Jefferson Lab cavity, HOM, controls, operation 1007
 
  • M.A. Drury, E. Daly, N.A. Huque, L.K. King, A.D. Solopova
    JLab, Newport News, Virginia, USA
  • J. Nelson, B.H. Ripman, L.M. Zacarias
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other Department of Energy (DOE) national laboratories, in the Linac Co-herent Light Source II project (LCLS-II). The SRF Insti-tute at Jefferson Lab is currently building 21 cryomod-ules for this project. The cryomodules are based on the XFEL design and have been modified for continuous wave (CW) operation and to comply with other LCLS-II specifications. Each cryomodule contains eight 9-cell cavities with coaxial power couplers operating at 1.3 GHz. The cryomodule also contain a magnet package that consists of a quadrupole and two correctors. Most of these cryomodules will be tested in the Cryomodule Test Facility (CMTF) at Jefferson Lab before shipment to SLAC. Up to three of these cryomodules will be tested in a test stand set up in the Low Energy Recovery Facility (LERF) at Jefferson Lab. Acceptance testing of the LCLS-II cryomodules began in December 2016. Twelve cryomodules have currently completed Acceptance Test-ing. This paper will summarize the results of those tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP056  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP058 Conditioning Experience of the ESS Spoke Cryomodule Prototype cavity, vacuum, operation, hardware 1011
 
  • A. Miyazaki, K. Fransson, K.J. Gajewski, L. Hermansson, H. Li, R.J.M.Y. Ruber, R. Santiago Kern, R. Wedberg
    Uppsala University, Uppsala, Sweden
 
  The prototype cryomodule for the ESS double spoke cavities is tested in the FREIA laboratory at Uppsala University. One of the goals of this test is to establish an efficient way to assess one series cryomodule within a due time (about one month). In 2017, the dedicated high-power test for dressed cavities in the horizontal cryostat (HNOSS) revealed that one of the possible challenges is a conditioning process of the coupler and cavity multipacting. Each process should not damage any components of the cryomodule but at the same time it should be finished in a reasonable time scale. More importantly, unlike the previous tests in the vertical or horizontal cryostat, conditioning two cavities in one cryomodule in due time may require parallel processing in some part of the procedure. This study will be the first practical experience of double spoke cavity conditioning in a cryomodule, and will lead to a standard conditioning recipe for future projects containing superconducting spoke cavities. In this presentation, a preliminary result of cryomodule testing will be shown with a special focus on the conditioning processes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP058  
About • paper received ※ 01 July 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP059 RF Incoming Inspection of 1.3 GHz Cryomodules for LCLS-II at SLAC National Accelerator Laboratory cavity, HOM, linac, controls 1014
 
  • S. Aderhold, C. Adolphsen, A. Burrill, D. Gonnella, J. Nelson
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the US DOE and the LCLS-II Project.
The main part of the SRF linac for the Linac Coherent Light Source II (LCLS-II) at SLAC National Accelerator Laboratory will consist of 35 cryomodules with superconducting RF cavities operating at 1.3 GHz. The cryomodules are assembled and tested at Fermi National Accelerator Laboratory and Thomas Jefferson National Accelerator Facility. Following the transport to SLAC, the cryomodules undergo several incoming inspection steps before ultimately being moved to the tunnel for installation in the linac. The RF part of the incoming inspection covers measurements of a number of parameters like cavity frequency spectrum, notch filter frequency of the higher order mode couplers and external quality factor Qext of the input coupler. The inspection results are compared to measurements at the partner labs prior to shipping and the nominal values in order to verify that the cryomodules have not been damaged during the transport and are ready for installation. We present an overview and analysis of the inspections for the cryomodules received to date.
 
poster icon Poster THP059 [1.223 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP059  
About • paper received ※ 02 July 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP060 Experience With LCLS-II Cryomodule Testing at Fermilab cavity, operation, detector, SRF 1018
 
  • E.R. Harms, E. Cullerton, C.M. Ginsburg, B.J. Hansen, B.D. Hartsell, J.P. Holzbauer, J. Hurd, V.S. Kashikhin, M.J. Kucera, F.L. Lewis, A. Lunin, D.L. Newhart, D.J. Nicklaus, P.S. Prieto, O.V. Prokofiev, J. Reid, N. Solyak, R.P. Stanek, M.A. Tartaglia, G. Wu
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
  • J. Einstein-Curtis
    Private Address, Naperville, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Cryomodule Test Stand (CMTS1) at Fermilab has been engaged with testing 8-cavity 1.3 GHz cryomodules designed and assembled for the LCLS-II project at SLAC National Accelerator Laboratory since 2016. Over these three years twenty cryomodules have been cooled to 2K and power tested in continuous wave mode on a roughly once per month cycle. Test stand layout and testing procedures are presented together with results from the cryomodules tested to date. Lessons learned and future plans will also be shared.
 
poster icon Poster THP060 [2.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP060  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP061 Performance of FRIB Production Quarter-Wave and Half-Wave Resonators in Dewar Certification Tests cavity, SRF, linac, MMI 1023
 
  • W. Hartung, S.H. Kim, D. Norton, J.T. Popielarski, K. Saito, J.F. Schwartz, C. Wei, T. Xu, C. Zhang
    FRIB, East Lansing, Michigan, USA
 
  The Facility for Rare Isotope Beams (FRIB) is under construction at Michigan State University (MSU). The FRIB superconducting driver linac will accelerate ion beams to 200 MeV per nucleon. The driver linac requires 104 quarter-wave resonators (QWRs, β = 0.041 and 0.085) and 220 half-wave resonators (HWRs, β = 0.29 and 0.54). The jacketed resonators are Dewar tested at MSU before installation into cryomodules. The cryomodules for β = 0.041, 0.085, and 0.29 have been completed and certified; 88% of the β = 0.54 HWRs have been certified (as of March 2019). Beam commissioning of the QWR cryomodules is in progress. The Dewar certification tests have provided valuable statistics on the performance of production QWRs and HWRs at 4.3 K and 2 K and on performance limits. Results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP061  
About • paper received ※ 12 July 2019       paper accepted ※ 13 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP062 Progress in FRIB Cryomodule Bunker Tests cavity, solenoid, SRF, operation 1029
 
  • W. Chang, S. Caton, A. Ganshyn, W. Hartung, S.H. Kim, B. Laumer, H. Maniar, J.T. Popielarski, K. Saito, M. Xu, T. Xu, C. Zhang, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is under construction at Michigan State University (MSU). The FRIB superconducting driver linac will accelerate ion beams to 200 MeV per nucleon. The driver linac requires 104 quarter-wave resonators (QWRs, β = 0.041 and 0.085) and 220 half-wave resonators (HWRs, β = 0.29 and 0.54). The jacketed resonators are Dewar tested at MSU before installation into cryomodules. The cryomodules for β = 0.041, 0.085, and 0.29 have been completed and certified; 32 out of 49 cryomodules are certified via bunker test (as of March 2019). FRIB cryomodule needs 74 solenoid packages: 8-25 cm packages for 0.041 QWR CMs, 36-50 cm for 0.085 CMs, 12-50 cm for 0.29 CMs, and 18-50 cm for 0.53 CMs. The bunker certification completed 58 packages. All the magnets energized at FRIB goal (90 A/8 T for solenoid and 19 A/0.064 Tm for dipoles), all cavities tested at or above specified operating gradient. In this paper, we report the bunker test result.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP062  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP063 Inivestigation of the Possibility of High Efficiency L-Band SRF Cavity for Medium-Beta Heavy Ion Multi-Charge-State Beams cavity, linac, emittance, heavy-ion 1035
 
  • S.M. Shanab, K. Saito, Y. Yamazaki
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work was supported in part by the U.S. National Science Foundation, under Grant PHY-1102511 and by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The possibility of L-band SRF elliptical cavity in order to accelerate heavy ion multi-charge-state beams is being investigated for accelerating energy higher than 200 MeV/u. A first simple analytic study was performed and the result showed that the longitudinal acceptance of 1288 MHz is sufficient for heavy-ion multi-charge-state (5 charge states) medium-beta linac. Encouraged this result, detail beam dynamic simulation took place. The cryogenic heat load is also calculated for this linac with taken into consideration cavity doping technology. In this paper, a summary of the beam dynamics and cryogen-ic heat load calculations for 1288 MHz linac for heavy-ion multi-charge-state (5 charge states) medium-beta beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP063  
About • paper received ※ 24 June 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP070 CEPC HOM Coupler R&D HOM, cavity, collider, SRF 1050
 
  • H.J. Zheng, F. Meng, P. Sha, J.Y. Zhai
    IHEP, Beijing, People’s Republic of China
 
  The conceptual design report (CDR) for the Circular Electron Positron Collider (CEPC) has been published in September 2018. In this talk, the CDR design and prototyping of the HOM coupler for the CEPC Collider ring cavity will be given. Each cavity has two detachable coaxial HOM couplers mounted on the cavity beam pipe with HOM power handling capacity of 1 kW. A double notch coupler is chosen due to its wide bandwidth for the fundamental mode. A prototype of this HOM coupler and a coaxial line test bench have been fabricated and tested under low power. The low power test results agree well with the simulation results. The high power test was also carried out in room temperature.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP070  
About • paper received ※ 19 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP071 HOM Measurement Results for CEPC 650 MHz 2-cell Cavity HOM, cavity, damping, collider 1055
 
  • H.J. Zheng, F. Meng, J.Y. Zhai
    IHEP, Beijing, People’s Republic of China
 
  CEPC will use a 650 MHz RF system with 240 2-cell cavities for the Collider. The Collider is a double-ring with shared cavities for Higgs operation and separate cavities for W and Z operations. The higher order modes (HOM) excited by the intense beam bunches must be damped to avoid additional cryogenic loss and multi-bunch instabilities. In this paper, the impedance budget and HOM damping and HOM power requirement for the CEPC Collider ring are given. This HOM power limit and the fast-growing longitudinal coupled-bunch instabilities (CBI) driven by both the fundamental and higher order modes impedance of the RF cavities determine to a large extent the highest beam current and luminosity obtainable in the Z mode. Two prototypes of HOM coupler have been fabricated and installed on the 650 MHz 2-cell cavity. The higher order modes were verified by bead pulling method. The Qe for the HOMs were also measured. A test bench with two 2-cell cavities was used to measure the real damping results and HOM propagating properties for a cavity string.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP071  
About • paper received ※ 19 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP086 Preliminary Design of Superconducting Cavity Test Platform in CSNS Campus cavity, superconducting-cavity, SRF, controls 1104
 
  • S.H. Liu, X. Li, W. Long, H. Sun, S. Wang, C.L. Zhang, J.Y. Zhu
    IHEP, People’s Republic of China
  • S.Y. Chen, Y. Liu, C. Shi
    DNSC, Dongguan, People’s Republic of China
  • P.C. Wang, B. Wu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  For the beam power upgrade of CSNS (China Spallation Neutron Source) and the construction of the high performance photon source in South China in the near future, the superconducting cavity test platform which includes vertical test stand, single cavity horizontal test stand, cryomodule horizontal test stand and coupler test stand will be built. This paper will generally introduce the preliminary design of the test platform and corresponding test parameters.  
poster icon Poster THP086 [0.171 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP086  
About • paper received ※ 21 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP090 Characterization of SSR1 Cavities for PIP-II Linac cavity, radiation, multipactoring, linac 1120
 
  • A.I. Sukhanov, F.G. Garcia, B.M. Hanna, S. Kazakov, Y.M. Pischalnikov, O.V. Prokofiev, W. Schappert, I. Terechkine, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
  • S. Samani
    Queen Mary University of London, London, United Kingdom
 
  A cryomodule of 325 MHz Single Spoke Resonator type 1 (SSR1) superconducting RF cavities is being built at Fermilab for the PIP-II project. Twelve SSR1 cavities were manufactured in industry in USA (10 cavities) and India (2 cavities) and delivered to Fermilab. In this paper we present results of characterization of fully integrated jacketed cavities with high power coupler and tuner at the Fermilab Spoke Test Cryostat (STC).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP090  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP092 Status of Cryomodule Testing at CMTB for CW R&D cavity, FEL, operation, linac 1129
 
  • J. Branlard, V. Ayvazyan, A. Bellandi, J. Eschke, C. Gümüş, D. Kostin, K.P. Przygoda, H. Schlarb, J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Cryo Module Test Bench (CMTB) is a facility to perform tests on European XFEL like superconducting accelerating modules. The 120 kW Inductive Output Tube (IOT) installed in the facility allows driving the eight superconducting cavities inside the module under test in a vector-sum or single cavity control fashion with average Continuous Wave (CW) gradients higher than 20 MV/m. The scope of these tests is to evaluate the feasibility of upgrading European XFEL to CW operation mode. Following the successful tests done on a prototype module XM-3 the initial performance results on the production module XM50 will be presented in this paper. Because of European XFEL requirements, XM50 is equipped with modified couplers that allow a variable Loaded Quality factor(QL) to values higher than 4x107. A cost relevant open question is the maximum QL that can be reached while maintaining the system within the European XFEL field stability specifications of 0.01 % in amplitude and 0.01 deg in phase. Because of this, the LLRF system capability of rejecting microphonic and RF disturbances, as well as Lorentz Force Detuning (LFD) related effects in open and closed loop is of prime interest.  
poster icon Poster THP092 [1.514 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP092  
About • paper received ※ 25 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP097 Field Emission Studies on ESS Elliptical Prototype Cavities at CEA Saclay cavity, electron, radiation, detector 1147
 
  • E. Cenni, M. Baudrier, G. Devanz, L. Maurice, O. Piquet, D. Roudier
    CEA-DRF-IRFU, France
 
  CEA Saclay is in charge of the cavity prototypes that is designing, manufacturing, testing and integrating them into demonstrator cryomodules. We have manufactured 6 medium beta and 5 high beta cavities. As part of these activities we are interested in field emission as one of the limiting factors for cavity performances. We are currently collecting data from cavities operated in vertical cryostat and inside cryomodules. Analysis are carried out by means of particle tracking simulation and comparison with radiation dose monitor and scintillators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP097  
About • paper received ※ 27 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP099 The ESS Database for Elliptical Cavities cavity, database, HOM, SRF 1152
 
  • P. Pierini, C.G. Maiano
    ESS, Lund, Sweden
  • A. Bosotti, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Wang
    IHEP, Beijing, People’s Republic of China
 
  The large inkind scope of the elliptical superconducting RF linac of the ESS facility implies the handling of handover conditions between the cavities fabrication and testing phases performed at INFN and STFC, to the assembly of cryomodules at CEA and later to ESS in Lund. The performance qualification at the module test stand, and later the commissioning and operation phases require the availability of the cavity performance and frequency data under all environmental conditions during preparation (e.g. temperature, vacuum in beam line/He vessel/vacuum vessel, tuner state). Availability of the data needs to be guaranteed for the long term maintainability of the accelerator. For these reasons a cavity database has been set up at ESS, integrating the data contained in the handover documentation from the inkind partners and extending it during the activities at ESS after receiving the modules. The database has been used to analyze the preparation steps of the prototype demonstrator cryomodule for the tests at ESS, by benchmarking with the data collected during the tests at CEA, and is currently used during the series cavities handover phases.  
poster icon Poster THP099 [10.434 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP099  
About • paper received ※ 03 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP106 An SRF Test Stand in High Intensity and High Energy Proton Beams cavity, cryogenics, vacuum, SRF 1187
 
  • G. Vandoni, K. Artoos, V. Baglin, K. Brodzinski, R. Calaga, O. Capatina, S.D. Claudet, L.P. Delprat, S. Mehanneche, E. Montesinos, C. Pasquino, J.S. Swieszek
    CERN, Meyrin, Switzerland
 
  In the framework of HL-LHC, a new infrastructure was installed in 2018, to test SRF structures in the proton beams of the SPS. Scope of the test stand is to study the operational performance of crab cavities for HL-LHC – more generally, SRF cavities – through a wide range of proton beam parameters up to high energy and current, under safe conditions for equipment and personnel. The SPS beam instrumentation is used to monitor orbit centering, RF phase scans, bunch rotation. To minimize impact on beam time, infrastructure and services allow for full remote control. Critical aperture restrictions is overcome by placing the test structure and its ancillaries on a motorized table for lateral translation in- and out of beam. Two articulated Y-shaped vacuum chambers connect the test cryomodule on a beam by-pass. A new cryogenic refrigerator is installed in a split scheme, with an underground cold box fed from a surface compressor. The two Inductive Output Tubes (IOT) power amplifiers deliver up to 60 kW cw via coaxial transmission lines to the two cavities and charges and circulators, the latter installed on the translation table. Interlocks and safety equipment complete the test stand.  
poster icon Poster THP106 [3.982 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP106  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAA1 Overview of SRF Deflecting and Crabbing Cavities cavity, HOM, collider, luminosity 1192
 
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
 
  Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. Recently, a two-cavity cryomodule with double quarter wave crabbing cavity was installed in SPS at CERN and successfully tested with the proton beam. We present the details of different superconducting deflecting and crabbing cavities and their applications, as well as the recent results of the crabbing systems test at SPS.  
slides icon Slides FRCAA1 [14.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA1  
About • paper received ※ 04 July 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAA3 Industrial Cavity Production: Lessons Learned to Push the Boundaries of Nitrogen-Doping cavity, niobium, SRF, linac 1199
 
  • D. Gonnella, S. Aderhold, A. Burrill, M.C. Ross
    SLAC, Menlo Park, California, USA
  • E. Daly, G.K. Davis, F. Marhauser, A.D. Palczewski, K.M. Wilson
    JLab, Newport News, Virginia, USA
  • A. Grassellino, C.J. Grimm, T.N. Khabiboulline, O.S. Melnychuk, S. Posen, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US DOE Contract DE-AC02-76SF00515.
Nitrogen doping has been proven now in several labs to enhance Q0 values of 1.3 GHz cavities in the gradient domain favored by CW operation. The choice of doping for the LCLS-II project has given the community a wealth of statistics and experience on the challenge of transferring the doping technology to industry. Overall, industry-produced nitrogen-doped cavities have shown excellent performance, however some technical issues have arisen. This talk focuses on lessons learned from the production of over 300 nitrogen-doped cavities for LCLS-II and how issues were mitigated to further improve performance. Finally, I will discuss pushing the boundaries of nitrogen-doping further by exploring different doping regimes in order to maintain excellent Q0 performance, while reaching higher quench fields.
 
slides icon Slides FRCAA3 [16.880 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA3  
About • paper received ※ 02 July 2019       paper accepted ※ 03 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAA4 Progress in SRF CH-Cavities for the HELIAC CW Linac at GSI cavity, linac, heavy-ion, MMI 1206
 
  • M. Miski-Oglu, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, S. Yaramyshev
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, M. Heilmann, T. Kürzeder, S. Lauber, J. List, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, F.D. Dziuba, J. List
    KPH, Mainz, Germany
  • M. Basten, M. Busch, T. Conrad, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • S. Lauber
    IKP, Mainz, Germany
 
  The machine beam commissioning is a major milestone of the R&D for the superconducting heavy ion continuous wave linear accelerator HELIAC of Helmholtz Institute Mainz (HIM) and GSI developed in collaboration with IAP Goethe-University Frankfurt. During successful beam commissioning of the superconducting 15-gap Crossbar H-mode cavity at GSI Helmholtzzentrum für Schwerionenforschung heavy ions up to the design beam energy have been accelerated. The design acceleration gain of 3.5 MeV has been reached with full transmission for heavy ion beams of up to 1.5 particle mueA. We present fabrication experience and results of off-line and on-line cavity performance. The next step is the procurement and commissioning of so called ’Advanced Demonstrator’ - the first of series cryomodule for the entire accelerator HELIAC. Results of further Demonstrator beam tests, as well as the status of the Advanced demonstrator project will be reported.  
slides icon Slides FRCAA4 [9.864 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA4  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCAA6 Investigation on 1, 3 and 9-Cell SRF Elliptical Cavities made of Large Grain Niobium cavity, SRF, niobium, radio-frequency 1213
 
  • T. Dohmae, H. Inoue, T. Kubo, H. Shimizu, K. Umemori, Y. Watanabe, M. Yamanaka
    KEK, Ibaraki, Japan
 
  Large grain (LG) niobium is directly sliced from niobium ingot. LG niobium sheet has larger crystal size than that of fine grain (FG) niobium which is forged and rolled, and normally used as the SRF cavity materials. It is expected that higher Q-value can be achieved using LG niobium sheet. And, effective reduction in material cost can be also achieved by LG niobium since forge and rolling process are skipped. On the other hand, there are some difficulties in fabrication since it has large deformation due to strong anisotropy. Cavity fabrication facility in KEK has been fabricated 1, 3 and 9-cell elliptical cavities made by LG niobium and RF tested in vertical cryostat. In this talk, the fabrication process and test results from these cavities will be presented.  
slides icon Slides FRCAA6 [5.819 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-FRCAA6  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)