SRF Technology - Cryomodule
cryomodule design
Paper Title Page
SATU3
Fundamentals of Cryomodule Design and Cryogenics  
 
  • B. Petersen
    DESY, Hamburg, Germany
 
  Some considerations and specifications for cryomodule design are discussed for different accelerator applications. The cryomodule design as well as the layout of the cryogenic distribution scheme have to be adapted to the particular accelerator requirements. Disregarding the differences, the various cryomodule designs share several common fundamental features like thermal insulation and RF cavity alignment. Examples for cryomodule designs are shown with reference to the ESS and XFEL cryomodules. Some criteria for the choice of the superconducting cavity operation temperature are discussed. Fundamental elements of helium refrigerators are shown. In particular, different options for subatmospheric Helium II bath cooling are illustrated. The importance of Helium bath pressure stability for the RF operation of superconducting cavities is clarified. Some methods to adapt the refrigerator operation to RF load changes or to compensate the RF load changes are explained. The XFEL linac cryogenic system layout is presented as an example.  
slides icon Slides SATU3 [5.260 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP089 Development of a Suspension System for the Road Transportation of Cryomodule SSR1 through a Multilevel Finite Element-Multibody Approach 297
 
  • P. Neri, F. Bucchi
    University of Pisa, Pisa, Italy
  • D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  The on-road transportation of cryomodules (CM) is a critical phase during which the structure may be subject to relevant dynamic loading. Thus, an accurate design of Transportation Tool (TT), equipped with a proper suspension system, is mandatory. In this paper the TT design for the PIP-II proto SSR1 CM is presented. A finite element (FE) model was developed considering the main CM parts. However, the full model was not suited for the design of the suspension system because of its computational time. Thus, it was exported as a Modal Neutral File to a multibody (MB) software, where minor components were modeled as rigid bodies or lumped stiffnesses. The reduced MB model considerably shortened the computational time and it was exploited for the design of the TT, which includes helical isolators (HI) acting as a mechanical filter. A real 3D acceleration profile, acquired during the transportation of a LCLS-II CM from Fermilab to SLAC, was used to validate the TT effectiveness in reducing the vibrational loading. In addition, the results of the MB analysis were used to perform FE analysis of critical components, such as bellows.  
poster icon Poster MOP089 [0.995 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP089  
About • paper received ※ 29 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP092 Overview of LCLS-II Project Status at Fermilab 302
 
  • R.P. Stanek, T.T. Arkan, J.N. Blowers, C.M. Ginsburg, A. Grassellino, C.J. Grimm, B.J. Hansen, E.R. Harms, B.D. Hartsell, J.P. Holzbauer, J.A. Kaluzny, A.L. Klebaner, A. Martinez, T.H. Nicol, Y.O. Orlov, K.S. Premo, N. Solyak, J. Theilacker, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  The superconducting RF Continuous-Wave (CW) Linac for the LCLS-II consists of thirty-five 1.3 GHz and two 3.9 GHz cryomodules that Fermilab and Jefferson Lab are jointly producing in collaboration with SLAC. Fermilab’s scope of work is to build, test, and deliver half the 1.3 GHz and all the 3.9 GHz cryomodules and to design and procure components for the cryogenic distribution system. Fermilab has primary responsibility for delivering a working design. The cryomodule design basis was the European XFEL but several elements evolved to meet CW operation requirements and specifics of the SLAC tunnel. There have been several challenges faced during the design, assembly, testing and transportation of the cryomodules which have required design updates. Success in overcoming these challenges is attributable to the strength of the LCLS-II SRF Collaboration (Fermilab, Jefferson Lab and SLAC with extensive help from DESY and CEA/Saclay). The cryogenic distribution system has progressed relatively well and there are valuable Lessons Learned. An overview of the status, accomplishments, problems encountered, solutions developed, and a summary of Lessons Learned will be presented.  
poster icon Poster MOP092 [0.393 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP092  
About • paper received ※ 20 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP094 Design Strategy of the PIP-II Cryomodules 307
 
  • V. Roger, S.K. Chandrasekaran, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan II (PIP-II) is the first U.S. accelerator project that will have significant contributions from international partners. Research institutions in India, Italy, UK and France will build major components of the particle accelerator. The High Beta 650 MHz (HB650) prototype cryomodule is being designed jointly between Fermilab (USA), CEA (France), STFC (UK) and RRCAT (India). The assembly of this prototype cryomodule will be done at Fermilab whereas the production cryomodules will be assembled in UK. Concerning the Low Beta 650 MHz (LB650) cryomodules, they will be designed and assembled at CEA. To reduce the cost of the project and to increase the quality it is essential to define a design strategy for each cryomodule which includes a degree of standardization. In this way, the lessons learned of each prototype cryomodule will have a great impact not only on one cryomodule type but on all cryomodules. An international joint design brings also additional challenges to the project: which unit system should be used? Should a common project lifecycle management system be used for all partners? How to transport the cryomodules overseas.
 
poster icon Poster MOP094 [1.117 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP094  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP097 Preliminary Design of the IFMIF-DONES Superconducting Linac 311
 
  • T. Plomion, N. Bazin, N. Chauvin, G. Devanz, J. Plouin, K. Romieu
    CEA-DRF-IRFU, France
  • S. Chel
    CEA-IRFU, Gif-sur-Yvette, France
 
  The linear accelerator for the DONES facility (DEMO oriented neutron source) will serve as a neutron source for the assessment of materials damage in future fusion reactors. The DONES accelerator, which is based on the design of LIPac (Linear IFMIF Prototype Accelerator, which is under construction in Rokkasho, Japan) will accelerate deuterons from 100 keV up to 40 MeV at full CW current of 125 mA. This paper will present the preliminary design of the superconducting linac which is based on five cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP097  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP098 Spoke Cryomodule Prototyping for the MINERVA Project 315
 
  • H. Saugnac, S. Blivet, N. Gandolfo, C. Joly, J. Lesrel, D. Longuevergne, G. Olivier, M. Pierens
    IPN, Orsay, France
  • M.A. Baylac, D. Bondoux, F. Bouly, P.-O. Dumont, Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
  • W. Kaabi
    LAL, Orsay, France
  • W. Sarlin
    IPNO, Orsay, France
 
  In the framework of the MINERVA (MYRRHA 100 MeV) project, a prototyping period started at the end of 2017, has been planned. During this period a prototype cryomodule fully equipped (Spoke Cavities, Cryomodule Vessel, Cold Tuning System, Magnetic shielding, Power Couplers’) as well as its operating and controlling components (LLRF, RF amplifiers’) will be studied and manufactured. The aim of this prototyping period is first to complete the study of all the components and to validate the manufacturing and the assembling procedure in order to freeze the specifications for the serial construction. On the other hand the prototypes will serve as a test stand allowing to study and adjust the "Fault Tolerance" strategy parameters , which is a challenging operating concept specific to the MYRRHA LINAC This poster presents the various tasks related to this Spoke Cryomodule prototyping and their status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP098  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP099 Design of Crab Cavity Cryomodule for HL-LHC 320
 
  • T. Capelli, K. Artoos, A.B. Boucherie, K. Brodzinski, R. Calaga, S.J. Calvo, E. Cano-Pleite, O. Capatina, F. Carra, L. Dassa, F. Eriksson, M. Garlasché, A. Krawczyk, R. Leuxe, P. Minginette, E. Montesinos, B. Prochal, M. Sosin, M. Therasse
    CERN, Geneva, Switzerland
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Krawczyk, B. Prochal
    IFJ-PAN, Kraków, Poland
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by the HL-LHC project
Crab cavities are a key element to achieve the HL-LHC performance goals. There are two types of cavities Double Quarter Wave (DQW) for vertical crabbing, and Radiofrequency Dipole (RFD) for horizontal crabbing. Cavities are hosted in a cryomodule to provide optimal conditions for their operation at 2K while minimizing the external thermal loads and stray magnetic fields. One crab cryomodule contains more than thirteen thousand components and the assembly procedure for the first DQW prototype was carefully planned and executed. It was installed in the SPS accelerator at CERN in 2018 and successfully tested with proton beams. A review has thus been performed right after completion of the assembly in order to gather all the experience acquired and improve accordingly the design of the next generation of crab cryomodules. A second cryomodule with two RFD cavities is currently under production. This paper presents the lessons learnt from the first assembly and their implementation to the design of the future crab cryomodules.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP099  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP100 Design Upgrades of the Next Superconducting RF Gun for ELBE 326
 
  • J. Teichert, A. Arnold, S. Ma, P. Murcek, J. Schaber, H. Vennekate, R. Xiang, P.Z. Zwartek
    HZDR, Dresden, Germany
  • K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
 
  Funding: Funding is provided by the China Scholarship Council.
At the ELBE user facility a superconducting RF photoinjector has been in operation since several years. The injector is routinely applied for THz radiation production in user beam experiments. For future applications higher bunch charges, shorter pulses and lower transverse emittances are required. Thus it is planned to replace this SRF gun by a next version with an RF cavity reaching a higher acceleration gradient. We also present improvements concerning the SC solenoid and the photocathode exchange system and report on the status of construction and testing of this SRF gun cryomodule.
 
poster icon Poster MOP100 [2.199 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP100  
About • paper received ※ 27 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP101 Design and Manufacturing Challenges of the SSR1 Current Leads for PIP-II 329
 
  • S. Cheban, D. Passarelli, V. Roger
    Fermilab, Batavia, Illinois, USA
 
  The SSR1 cryomodule contains eight 325 MHz superconducting single spoke cavities and four solenoid-based focusing lenses operating at 2 K. The focusing lens for SSR1 cryomodule, is a superconducting magnet surrounded by a helium box which will be filled with liquid helium. The magnet assembly is composed of one solenoid with operating current 70 A and 2 quadrupoles correctors with operating current 45 A. The conduction cooled current leads will be used to power magnets. The details of current leads design, fabrication and room temperature qualification will be presented. Main emphasis will be put on the design and production process challenges and possible solutions to fulfilled operation requirement under low temperature conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP101  
About • paper received ※ 28 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP102 Alignment Monitoring System for the PIP-II Prototype SSR1 Cryomodule 332
 
  • S. Cheban, D. Passarelli, S.Z. Zorzetti
    Fermilab, Batavia, Illinois, USA
  • G. Kautzmann
    CERN, Meyrin, Switzerland
 
  For the first prototype PIP-II SSR1 cryomodule, an alignment monitor system based on HBCAM will be used. The main focus will be changes in alignment due to shipping and handling or during cool down and operation process. The SSR1 cryomodule contains eight 325 MHz superconducting single spoke cavities and four solenoid’based focusing lenses, and an alignment error better than 0.5 mm RMS for the transverse solenoid, based on function requirement specification. The alignment monitor system has been configured to the objectives of SSR1 cryomodule: low space for integration; presence of magnetic fields; exposure to non-standard environmental conditions such as high vacuum and cryogenic temperatures. The mechanical design and first results of system performance will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP102  
About • paper received ※ 28 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA5 FRIBCavity and Cryomodule Performance, Comparison with the Design and Lessons Learned 742
 
  • S.J. Miller, H. Ao, B. Bird, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, J. Curtin, K. Elliott, A. Facco, V. Ganni, I. Grender, W. Hartung, J.D. Hulbert, S.H. Kim, P. Manwiller, E.S. Metzgar, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, M. Shuptar, J. Simon, B.P. Tousignant, D.R. Victory, J. Wei, J.D. Wenstrom, K. Witgen, M. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) requires the production of 46 cryomodules. Design is complete on all six cryomodule types which utilize four superconducting radio frequency (SRF) cavity designs and superconducting solenoids. The FRIB cryomodules utilize an innovative bottom up approach to achieve alignment tolerance and simplify production assembly. The cryomodule testing includes qualification of the resonator performance, fundamental power couplers, tuners, and cryogenic systems. FRIB beam commissioning has been performed on 15 cryomodules in the FRIB and validates the FRIB cryomodule bottom up assembly and alignment method. This paper will report the FRIB cryomodule design, performance, and the alignment results and their impact on beam commissioning.
 
slides icon Slides WETEA5 [14.640 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA5  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEB1 Development of Superconducting Quarter-Wave Resonator and Cryomodule for Low-Beta Ion Accelerators at RIKEN Radioactive Isotope Beam Factory 750
 
  • N. Sakamoto, T. Dantsuka, M. Fujimaki, H. Imao, O. Kamigaito, K. Kusaka, H. Okuno, K. Ozeki, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  A prototype cryomodule with a superconducting quarter- wave resonator (SC QWR) has been developed at RIKEN Radioactive Isotope Beam Factory (RIBF). During the last SRF conference, we presented the performance of our first SC QWR and the first cool-down test of its cryomodule. Since then, we have continued our efforts to improve cavity performance and succeeded in recovering deteriorated Q0. In this paper, we report what we constructed and learned from the prototype, including design issues with the cavity and its cryomodule. Design issues related to the new SC QWRs and their cryomodules for the SC linac booster of the RIKEN Heavy-Ion Linac (RILAC) are described as well.  
slides icon Slides WETEB1 [120.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEB1  
About • paper received ※ 24 June 2019       paper accepted ※ 05 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)