Author: Taguchi, J.
Paper Title Page
MOP083 R&D of Copper Electroplating Process for Power Couplers: Effect of Microstructures on RRR 278
  • Y. Okii, J. Taguchi
    Nomura Plating Co, Ltd., Osaka, Japan
  • E. Kako, S. Michizono, Y. Yamamoto
    KEK, Ibaraki, Japan
  • H. Takahashi, H. Yasutake
    CETD, Tochigi, Japan
  Power couplers for superconducting cavities are required to have both low-thermal conductivity and high-electrical conductivity, because high-thermal conductivity and low-electrical conductivity could generate unexpected increase for heat load. In order to combine these contrary properties, power couplers are made of stainless steel and plated with copper plating. As electrical conductivity of copper layer affects dynamic heat load, it is crucial to optimize plating processes. In this study, we investigated influences of plating parameters (i.e., thickness of copper layer, plating bath composition, bath temperature, heat-treatment conditions) on RRR by collaborative work among Nomura plating, CETD, and KEK. As a result, we obtained high-RRR samples with conditions noted below; (1) electroformed copper plate, (2) copper layer thickness of over 50 µm, and (3) heat-treatment at 200deg-1h, (4) other plating bath composition. In addition, we observed microstructures of several samples, then found that microstructures of copper layer are strongly related to RRR. In this paper, we will present the recent results for this investigation.  
DOI • reference for this paper ※  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)