Author: Foster, B.
Paper Title Page
MOP023 Nitrogen Infusion Sample R&D at DESY 77
SUSP002   use link to see paper's listing under its alternate paper code  
  • C. Bate, A. Dangwal Pandey, A. Ermakov, B. Foster, T.F. Keller, D. Reschke, J. Schaffran, S. Sievers, N. Walker, H. Weise, M. Wenskat
    DESY, Hamburg, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • G.D.L. Semione, V. Vonk
    DESY Nanolab, FS-NL, Hamburg, Germany
  • A. Stierle
    University of Hamburg, Hamburg, Germany
  The European XFEL continuous wave upgrade requires cavities with reduced surface resistance (high Q-values) for high duty cycle while maintaining high accelerating gradient for short-pulse operation. A possible way to meet the requirements is the so-called nitrogen infusion procedure. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on sample R&D, with the goal to identify key parameters of the process and establish a stable, reproducible recipe. To understand the underlying processes of the surface evolution, which gives improved cavity performance, advanced surface analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized. Additionally, a small furnace just for samples was set up to change and explore the parameter space of the infusion recipe. Results of these analyses, their implications for the cavity R&D and next steps are presented.  
poster icon Poster MOP023 [3.759 MB]  
DOI • reference for this paper ※  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)