Author: Amorim Carvalho, A.
Paper Title Page
THP012 Assessment of the Mechanical Properties of Ultra-High Purity Niobium After Cold Work and Heat Treatment With the HL-LHC Crab Cavities as Benchmark 860
  • A. Gallifa Terricabras, A. Amorim Carvalho, I. Aviles Santillana, S. Barrière, R. Calaga, E. Cano-Pleite, O. Capatina, M.D. Crouvizier, L. Dassa, M.S. Meyer, N. Valverde Alonso
    CERN, Geneva, Switzerland
  • M. Benke, A.B. Palotas, G. Szabó, M. Szűcs
    University of Miskolc, Faculty of Materials Science and Engineering, Miskolc-Egyetemváros, Hungary
  • A. Hlavács, G.J. Krallics, V. Mertinger, M. Sepsi
    University of Miskolc, Miskolc, Hungary
  The High Luminosity Large Hadron Collider (HL-LHC) is the upgrade of the world’s largest particle collider; it will allow the full exploitation of the LHC potential and its operation beyond 2025. An essential part of the HL-LHC project are the Crab Cavities, that are particle deflecting SRF cavities of non-axisymmetric shape made of bulk ultra-high purity Nb. Since the cavities are produced by complex metal sheet forming processes, followed by a heat treatment (HT) for H outgassing (650 °C, 24 h), there is uncertainty on their mechanical properties after manufacturing and in service conditions (2 K). Mechanical tests at room temperature have been conducted on RRR300 pure Nb samples. The samples were previously submitted, by cold cross-rolling, to different levels of plastic deformation representative of the effective plastic strain seen by the Nb sheets during forming operations. Moreover, a comparison of the mechanical properties of cold cross-rolled samples before and after HT has been established. Results of evolution of the microstructure and hardness are also presented. This study can be of interest for Nb cavities to be sub-mitted to HT at 650 °C, and may help to push the design of novel SRF cavities.  
DOI • reference for this paper ※  
About • paper received ※ 22 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THP036 An Insight on the Thermal and Mechanical Numerical Evaluations for the High-Luminosity LHC Crab Cavities 929
  • E. Cano-Pleite, A. Amorim Carvalho, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, M. Garlasché, R. Leuxe, E. Montesinos
    CERN, Meyrin, Switzerland
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • S. Verdú-Andrés
    BNL, Upton, New York, USA
  Funding: Research supported by the HL-LHC project
One of the key devices of the HL-LHC project are SRF crab cavities. A cryomodule with two Double Quarter Wave (DQW) crab cavities has been successfully fabricat-ed and tested with beam at CERN whereas the Radio Frequency Dipole (RFD) crab cavities are currently on its fabrication process. The paper provides an insight on the multiple calculations carried out to evaluate the thermal and mechanical performance of the DQW and RFD cavi-ties and its components. In some cases, the presence of RF fields inside the cavity volume requires the use of mul-tiphysics numerical models capable of coupling these fields with the thermal and mechanical domains. In fact, the RF field presents a strong dependency on the cavity shape, whereas the mechanical, thermal and electrical properties of the materials may substantially vary as a function of temperature, which in turn depends on the RF field. The results presented in this paper, using both cou-pled and uncoupled models, allowed elucidating the importance of physics coupling on the numerical evalua-tion of RF cavities and its components. Analyses were also of great support for the design evaluation and im-provement of future prototypes.
DOI • reference for this paper ※  
About • paper received ※ 21 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)